skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid Inverse Design of GaN-on-GaN Diode with Guard Ring Termination for BV and (V F Q) −1 Co-Optimization
GaN-on-GaN vertical diode is a promising device for next-generation power electronics. Its breakdown voltage (BV) is limited by edge termination designs such as guard rings. The design space of guard rings is huge and it is difficult to optimize manually. In this paper, we propose an effective inverse design strategy to co-optimize BV and (V F Q) −1 , where BV, V F , and Q are the breakdown voltage, forward voltage, and reserve capacitive charge of the diode, respectively. Using rapid Technology Computer-Aided-Design (TCAD) simulations, neural network (NN), and Pareto front generation, a GaN-on-GaN diode is optimized within 24 hours. We can obtain structures with 200V higher BV at medium (V F Q) −1 or find a nearly ideal BV structure with 25% higher BV 2 /R on compared to the best randomly generated TCAD data.  more » « less
Award ID(s):
2134374
PAR ID:
10440571
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
Page Range / eLocation ID:
143 to 146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the first experimental demonstration of a vertical superjunction device in GaN. P-type nickel oxide (NiO) is sputtered conformally in 6μm deep n-GaN trenches. Sputter recipe is tuned to enable 1017 cm −3 level acceptor concentration in NiO, easing its charge balance with the 9×1016 cm −3 doped n-GaN. Vertical GaN superjunction p-n diodes (SJ-PNDs) are fabricated on both native GaN and low-cost sapphire substrates. GaN SJ-PNDs on GaN and sapphire both show a breakdown voltage (BV) of 1100 V, being at least 900 V higher than their 1-D PND counterparts. The differential specific on-resistance (RON,SP) of the two SJ-PNDs are both 0.3mΩ⋅ cm 2 , with the drift region resistance (RDR,SP) extracted to be 0.15mΩ⋅ cm 2 . The RON,SP∼BV trade-off is among the best in GaN-on-GaN diodes and sets a new record for vertical GaN devices on foreign substrates. The RDR,SP∼BV trade-off exceeds the 1-D GaN limit, fulfilling the superjunction functionality in GaN. 
    more » « less
  2. Wide and ultrawide-bandgap semiconductors lie at the heart of next-generation high-power, high-frequency electronics. Here, we report the growth of ultrawide-bandgap boron nitride (BN) thin films on wide-bandgap gallium nitride (GaN) by pulsed laser deposition. Comprehensive spectroscopic (core level and valence band x-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and Raman) and microscopic (atomic force microscopy and scanning transmission electron microscopy) characterizations confirm the growth of BN thin films on GaN. Optically, we observed that the BN/GaN heterostructure is second-harmonic generation active. Moreover, we fabricated the BN/GaN heterostructure-based Schottky diode that demonstrates rectifying characteristics, lower turn-on voltage, and an improved breakdown capability (∼234 V) as compared to GaN (∼168 V), owing to the higher breakdown electrical field of BN. Our approach is an early step toward bridging the gap between wide and ultrawide-bandgap materials for potential optoelectronics as well as next-generation high-power electronics. 
    more » « less
  3. GaN high-electron-mobility transistors (HEMTs) are known to have no avalanche capability and insufficient short-circuit robustness. Recently, breakthrough avalanche and short-circuit capabilities have been experimentally demonstrated in a vertical GaN fin-channel junction-gate field-effect transistor (Fin-JFET), which shows a good promise for using GaN devices in automotive powertrains and electric grids. In particular, GaN Fin-JFETs demonstrated good short-circuit capability at avalanche breakdown voltage (BV AVA ), with a failure-to-open-circuit (FTO) signature. This work presents a comprehensive device physics-based study of the GaN Fin-JFET under short-circuit conditions, particularly at a bus voltage close to BV AVA . Mixed-mode electrothermal TCAD simulations were performed to understand the carrier dynamics, electric field distributions, and temperature profiles in the Fin-JFET under short-circuit and avalanche conditions. The results provide important physical references to understand the unique robustness of the vertical GaN Fin-JFET under the concurrence of short-circuit and avalanche as well as its desirable FTO signature. 
    more » « less
  4. β-Ga2O3is an emerging material and has the potential to revolutionize power electronics due to its ultra-wide-bandgap (UWBG) and lower native substrate cost compared to Silicon Carbide and Gallium Nitride. Sinceβ-Ga2O3technology is still not mature, experimental study ofβ-Ga2O3is difficult and expensive. Technology-Computer-Aided Design (TCAD) is thus a cost-effective way to study the potentials and limitations ofβ-Ga2O3devices. In this paper, TCAD parameters calibrated to experiments are presented. They are used to perform the simulations in heterojunction p-NiO/n-Ga2O3diode, Schottky diode, and normally-off Ga2O3vertical FinFET. Besides the current-voltage (I-V) simulations, breakdown, capacitance-voltage (C-V), and short-circuit ruggedness simulations with robust setups are discussed. TCAD Sentaurus is used in the simulations but the methodologies can be applied in other simulators easily. This paves the road to performing a holistic study ofβ-Ga2O3devices using TCAD. 
    more » « less
  5. Abstract We report a kV class, low ON-resistance, vertical GaN junction barrier Schottky (JBS) diode with selective-area p-regions formed via Mg implantation followed by high-temperature, ultra-high pressure (UHP) post-implantation activation anneal. The JBS has an ideality factor of 1.03, a turn-on voltage of 0.75 V, and a specific differential ON-resistance of 0.6 mΩ·cm 2 . The breakdown voltage of the JBS diode is 915 V, corresponding to a maximum electric field of 3.3 MV cm −1 . These results underline that high-performance GaN JBS can be realized using Mg implantation and high-temperature UHP post-activation anneal. 
    more » « less