skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Thermal Categorization of Ice‐Covered Lakes
Abstract Lakes are traditionally classified based on their thermal regime and trophic status. While this classification adequately captures many lakes, it is not sufficient to understand seasonally ice‐covered lakes, the most common lake type on Earth. We describe the inverse thermal stratification in 19 highly varying lakes and derive a model that predicts the temperature profile as a function of wind stress, area, and depth. The results suggest an additional subdivision of seasonally ice‐covered lakes to differentiate underice stratification. When ice forms in smaller and deeper lakes, inverse stratification will form with a thin buoyant layer of cold water (near 0°C) below the ice, which remains above a deeper 4°C layer. In contrast, the entire water column can cool to ∼0°C in larger and shallower lakes. We suggest these alternative conditions for dimictic lakes be termed “cryostratified” and “cryomictic.”  more » « less
Award ID(s):
1753639 1933016 1950170 1754276 1856224 1933102
PAR ID:
10442831
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
3
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Perennially ice‐covered lakes can have significantly different facies than open‐water lakes because sediment is transported onto the ice, where it accumulates, and sand grains preferentially melt through to be deposited on the lake floor. To characterize the facies in these lakes, sedimentary deposits from five Antarctic perennially ice‐covered lakes were described using lake‐bottom observations, underwater video and images, and sediment cores. One lake was dominated by laminated microbial mats and mud (derived from an abutting glacier), with disseminated sand and rare gravel. The other four lakes were dominated by laminated microbial mats and moderately well to moderately sorted medium to very coarse sand with sparse granules and pebbles; they contained minor interstitial or laminated mud (derived from streams and abutting glaciers). The sand was disseminated or localized in mounds and 1 m to more than 10 m long elongate ridges. Mounds were centimetres to metres in diameter; conical, elongate or round in shape; and isolated or deposited near or on top of one another. Sand layers in the mounds had normal, inverse, or no grading. Nine mixed mud and sand facies were defined for perennially ice‐covered lakes based on the relative proportion of mud to sand and the style of sand deposition. While perennially ice‐covered lake facies overlap with other ice‐influenced lakes and glaciomarine facies, they are characterized by a paucity of grains coarser than granules, a narrow range in sand grain sizes, and inverse grading in the sand mounds. These facies can be used to infer changes in ice cover through time and to identify perennially ice‐covered lakes in the rock record. Ancient perennially ice‐covered lakes are expected on Earth and Mars, and their characterization will provide new insights into past climatic conditions and habitability. 
    more » « less
  2. Abstract Winter ice conditions in the Great Lakes play a crucial role in shaping ecological processes, shoreline dynamics, and regional weather patterns. Although atmospheric factors are widely acknowledged as the primary drivers of ice formation and duration, the influence of subsurface groundwater flow remains largely unexplored. In this study, we evaluate how spatially and temporally variable groundwater flux affects ice formation and thermal structure in Lakes Michigan and Huron, using a coupled hydrodynamic‐ice model. Simulations were conducted for the winters of 2014, 2015, and 2016—a period characterized by distinct atmospheric and ice conditions—and were validated against observed ice concentration maps and temperature profiles. Results show that groundwater enhances ice thickness during colder winters by strengthening water column stability, limiting vertical mixing, and insulating the surface layer, thus promoting thicker, longer‐lasting ice. Sensitivity analyses reveal that moderate increases in groundwater flux intensify stratification and prolong ice concentration, while an extreme, high flux (1000x) disrupts stability and reduces ice thickness. Coastal regions display more pronounced effects due to higher groundwater input, whereas offshore zones exhibit comparatively weaker responses. These findings highlight the significant role of groundwater flux in modulating ice dynamics and stratification in large freshwater systems such as the Great Lakes. This research underscores the importance of incorporating subsurface hydrology into coupled modeling frameworks to improve predictions of ice dynamics and water column stratification. Future work should focus on obtaining high‐resolution observational data on groundwater flux and ice thickness, particularly near shorelines, to further refine coupled hydrodynamic‐ice models. 
    more » « less
  3. Abstract Although trends toward earlier ice‐out have been documented globally, the links between ice‐out timing and lake thermal and biogeochemical structure vary spatially. In high‐latitude lakes where ice‐out occurs close to peak intensity of solar radiation, these links remain unclear. Using a long‐term dataset from 13 lakes in West Greenland, we investigated how changing ice‐out and weather conditions affect lake thermal structure and oxygen concentrations. In early ice‐out years, lakes reach higher temperatures across the water column and have deeper epilimnia. Summer hypolimnia are the warmest (~ 11°C) in years when cooler air temperatures follow early ice‐out, allowing full lake turnover. Due to the higher potential for substantive spring mixing in early ice‐out years, a warmer hypolimnion is associated with higher dissolved oxygen concentrations. By affecting variability in spring mixing, the consequences of shifts in ice phenology for lakes at high latitudes differ from expectations based on temperate regions. 
    more » « less
  4. Abstract Limnological understanding of the role snow plays in under‐ice thermal dynamics is mainly based on studies of clear‐water lakes. Very little is known about the role snow plays in the thermal dynamics of dystrophic lakes. We conducted a whole lake experiment on a small, 8 m deep dystrophic bog lake in northern Wisconsin, where we removed all snowfall over two consecutive winters. Due to weather variability, only 1 year had predominantly black ice. Under these conditions, the lake rapidly cooled in early and mid‐winter, compared to snow covered conditions that insulated the lake from heat loss. The lake also rapidly gained heat in late winter resulting in isothermal conditions well in advance of ice‐off. These results show how water clarity modulates the influence of snow on under‐ice thermal dynamics, which is relevant to futures with snow droughts. 
    more » « less
  5. Abstract Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical one-dimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical observations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to be expected in other reservoirs and lakes in comparable regions. 
    more » « less