skip to main content


This content will become publicly available on March 2, 2024

Title: Mind the Gap: The Illusion of Skill Acquisition in Computational Thinking
With the advent of online educational platforms and the advances in pedagogical technologies, self-directed learning has emerged as one of the most popular modes of learning. Distance education---elevated by the COVID-19 pandemic---involves methods of instruction through a variety of remote activities which often rely on educational videos for mastery. In the absence of direct student engagement, the asynchronous nature of remote activities may deteriorate the quality of education for learners. Students often have an illusion of skill acquisition after watching videos, which results in overestimation of abilities and skills. We focus on the efficacy of skill acquisition through interactive technologies and assess their impact on computational thinking in comparison with delivery through other traditional media (e.g. videos and texts). In particular, we investigate the relationship between actual learning, perception of learning, and learners' confidence in adult learners. Our results reveal intriguing observations about the role of interactivity and visualization and their implications on the pedagogical design for self-directed learning modules.  more » « less
Award ID(s):
2144413 1915404
NSF-PAR ID:
10443103
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SIGCSE 2023: Proceedings of the 54th ACM Technical Symposium on Computer Science Education
Volume:
1
Page Range / eLocation ID:
778 to 784
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognize content applicability earlier in their college pathway. 
    more » « less
  2. Dispositions, along with skills and knowledge, form the three components of competency-based education. Moreover, studies have shown dispositions to be necessary for a successful career. However, unlike evidence-based teaching and learning approaches for knowledge acquisition and skill development, few studies focus on translating dispositions into observable behavioral patterns. An operationalization of dispositions, however, is crucial for students to understand and achieve respective learning outcomes in computing courses. This paper describes a multi-institutional study investigating students’ understanding of dispositions in terms of their behaviors while completing coursework. Students in six computing courses at four different institutions filled out a survey describing an instance of applying each of the five surveyed dispositions (adaptable, collaborative, persistent, responsible, and self-directed) in the courses’ assignments. The authors evaluated data by using Mayring’s qualitative content analysis. The result was a coding scheme with categories summarizing students’ concepts of dispositions and how they see themselves applying dispositions in the context of computing. These results are a first step in understanding dispositions in computing education and how they manifest in student behavior. This research has implications for educators developing new pedagogical approaches to promote and facilitate dispositions. Moreover, the operationalized behaviors constitute a starting point for new assessment strategies of dispositions. 
    more » « less
  3. Abstract  
    more » « less
  4. Engineering education aims to create a learning environment capable of developing vital engineering skill sets, preparing students to enter the workforce and succeed as future leaders. With all the rapid technological advancements, new engineering challenges continuously emerge, impeding the development of engineering skills. This insufficiency in developing the required skills resulted in high regression rates in students’ GPAs, resulting in industries reporting graduates’ unsatisfactory performance. From a pedagogical perspective, this problem is highly correlated with traditional learning methods that are inadequate for engaging students and improving their learning experience when adopted alone. Accordingly, educators have incorporated new learning methodologies to address the pre-defined problem and enhance the students’ learning experience. However, many of the currently adopted teaching methods still lack the potential to expose students to practical examples, and they are inefficient among engineering students, who tend to be active learners and prefer to use a variety of senses. To address this, our research team proposes integrating the technology of virtual reality (VR) into the laboratory work of engineering technology courses to improve the students’ learning experience and engagement. VR technology, an immersive high-tech media, was adopted to develop an interactive teaching module on hydraulic gripper designs in a VR construction-like environment. The module aims to expose engineering technology students to real-life applications by providing a more visceral experience than screen-based media through the generation of fully computer-simulated environments in which everything is digitized. This work presents the development and implementation of the VR construction lab module and the corresponding gripper designs. The virtual gripper models are developed using Oculus Virtual Reality (OVR) Metrics Tool for Unity, a Steam VR Overlay utility created to make visualizing the desktop in a VR setting simple and intuitive. The execution of the module comprises building the VR environment, designing and importing the gripper models, and creating a user-interface VR environment to visualize and interact with the model (gripper assembly/mechanism testing). Besides the visualization, manipulation, and interaction, the developed VR system allows for additional features like displaying technical information, guiding students throughout the assembly process, and other specialized options. Thus, the developed interactive VR module will serve as a perpetual mutable platform that can be readily adjusted to allow future add-ons to address future educational opportunities. 
    more » « less
  5. Most chemical engineering core classes are best taught when students are exposed to a face-to-face learning/teaching environment. With the arrival of coronavirus disease 2019 (COVID-19), the whole education system and the setting were disrupted at Hampton University (HU). Traditional in-person face-to-face classes were forced to move to remote instructions to maintain a healthy and safe campus environment and minimize the spread of COVID-19 on campus and in the community. As an instructor teaching core courses and unit operations laboratory in the Department of Chemical Engineering, it was challenging to move completely virtual and deliver instructions remotely without affecting students' learning outcomes. However, with the appropriate modern technologies and adapting to the students' change and needs, online teaching can be done efficiently and can still have efficient learning outcomes. Various activities were introduced to make the online/virtual class environment engaging in developing technical and professional skills and inducing learning for students. Using the latest educational tools and online resources, formative assessments were conducted throughout the course in an effort to improve student learning and instructor teaching. In addition to that, innovative ways of technology were also used to evaluate student learning and understanding of the material for grading and reporting purposes. Many of the modern educational tools, including Blackboard Collaborate Ultra, Ka-hoot, linoit, surveys, polls, and chemical engineering processes’ simulations and videos were in-troduced to make the synchronous sessions interactive. Likert-like surveys conducted were anal-yses to gauge the effectiveness of incorporation of technology during remote learning. This paper describes the innovative use of technologies to adapt to the COVID-19 pandemic in the Chemical Engineering Classes. It will also explain the strategies to assess the mode of delivery efficacy and how to change the course of teaching to adapt to the students' changing needs. 
    more » « less