Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognize content applicability earlier in their college pathway.
more »
« less
Mind the Gap: The Illusion of Skill Acquisition in Computational Thinking
With the advent of online educational platforms and the advances in pedagogical technologies, self-directed learning has emerged as one of the most popular modes of learning. Distance education---elevated by the COVID-19 pandemic---involves methods of instruction through a variety of remote activities which often rely on educational videos for mastery. In the absence of direct student engagement, the asynchronous nature of remote activities may deteriorate the quality of education for learners. Students often have an illusion of skill acquisition after watching videos, which results in overestimation of abilities and skills. We focus on the efficacy of skill acquisition through interactive technologies and assess their impact on computational thinking in comparison with delivery through other traditional media (e.g. videos and texts). In particular, we investigate the relationship between actual learning, perception of learning, and learners' confidence in adult learners. Our results reveal intriguing observations about the role of interactivity and visualization and their implications on the pedagogical design for self-directed learning modules.
more »
« less
- PAR ID:
- 10443103
- Date Published:
- Journal Name:
- SIGCSE 2023: Proceedings of the 54th ACM Technical Symposium on Computer Science Education
- Volume:
- 1
- Page Range / eLocation ID:
- 778 to 784
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the increasing use of virtual simulated environments and immersive technologies in STEM education and workforce training, it is becoming increasingly important to study and understand how learners’ interactions and navigation in virtual environments affect their learning and skill development. In this paper, we quantify and assess the effect of learners’ navigation in an immersive simulated environment on learning outcomes, where navigation is characterized by the total time spent in the simulation and time allocations to different areas within the virtual environment. We implement a set of immersive simulation-based learning (ISBL) modules in an undergraduate computer science course with eighteen students and record their screen as they navigate in the simulation environment to perform the tasks needed to complete the ISBL assignments. We use a video analytics tool to process and analyze the videos and collect statistics related to a set of navigation-related measures for each student. We also use surveys to collect data on students’ demographics, prior knowledge and experience, personality, experiential learning, and self-assessment of learning. We then perform a set of multivariable regression analyses to characterize and explain the relationship between navigation measures and constructs assessed via survey instruments to determine how/if users’ navigation in the simulated environment can be a predictor of their learning outcomes. The results indicate that the total time spent in the simulation and the distribution of time allocations among different areas within the simulated environment are predictors of experiential learning and students’ self-assessment of learning.more » « less
-
Captions play a major role in making educational videos accessible to all and are known to benefit a wide range of learners. However, many educational videos either do not have captions or have inaccurate captions. Prior work has shown the benefits of using crowdsourcing to obtain accurate captions in a cost-efficient way, though there is a lack of understanding of how learners edit captions of educational videos either individually or collaboratively. In this work, we conducted a user study where 58 learners (in a course of 387 learners) participated in the editing of captions in 89 lecture videos that were generated by Automatic Speech Recognition (ASR) technologies. For each video, different learners conducted two rounds of editing. Based on editing logs, we created a taxonomy of errors in educational video captions (e.g., Discipline-Specific, General, Equations). From the interviews, we identified individual and collaborative error editing strategies. We then further demonstrated the feasibility of applying machine learning models to assist learners in editing. Our work provides practical implications for advancing video-based learning and for educational video caption editing.more » « less
-
Accessibility efforts for d/Deaf and hard of hearing (DHH) learners in video-based learning have mainly focused on captions and interpreters, with limited attention to learners' emotional awareness--an important yet challenging skill for effective learning. Current emotion technologies are designed to support learners' emotional awareness and social needs; however, little is known about whether and how DHH learners could benefit from these technologies. Our study explores how DHH learners perceive and use emotion data from two collection approaches, self-reported and automatic emotion recognition (AER), in video-based learning. By comparing the use of these technologies between DHH (N=20) and hearing learners (N=20), we identified key differences in their usage and perceptions: 1) DHH learners enhanced their emotional awareness by rewatching the video to self-report their emotions and called for alternative methods for self-reporting emotion, such as using sign language or expressive emoji designs; and 2) while the AER technology could be useful for detecting emotional patterns in learning experiences, DHH learners expressed more concerns about the accuracy and intrusiveness of the AER data. Our findings provide novel design implications for improving the inclusiveness of emotion technologies to support DHH learners, such as leveraging DHH peer learners' emotions to elicit reflections.more » « less
-
Dispositions, along with skills and knowledge, form the three components of competency-based education. Moreover, studies have shown dispositions to be necessary for a successful career. However, unlike evidence-based teaching and learning approaches for knowledge acquisition and skill development, few studies focus on translating dispositions into observable behavioral patterns. An operationalization of dispositions, however, is crucial for students to understand and achieve respective learning outcomes in computing courses. This paper describes a multi-institutional study investigating students’ understanding of dispositions in terms of their behaviors while completing coursework. Students in six computing courses at four different institutions filled out a survey describing an instance of applying each of the five surveyed dispositions (adaptable, collaborative, persistent, responsible, and self-directed) in the courses’ assignments. The authors evaluated data by using Mayring’s qualitative content analysis. The result was a coding scheme with categories summarizing students’ concepts of dispositions and how they see themselves applying dispositions in the context of computing. These results are a first step in understanding dispositions in computing education and how they manifest in student behavior. This research has implications for educators developing new pedagogical approaches to promote and facilitate dispositions. Moreover, the operationalized behaviors constitute a starting point for new assessment strategies of dispositions.more » « less
An official website of the United States government

