skip to main content


Title: Identification of Error-in-Variables Switched Systems using a Riemannian Embedding
This paper considers the problem of error in variables identification for switched affine models. Since it is well known that this problem is generically NP hard, several relaxations have been proposed in the literature. However, while these approaches work well for low dimensional systems with few subsystems, they scale poorly with both the number of subsystems and their memory. To address this difficulty, we propose a computationally efficient alternative, based on embedding the data in the manifold of positive semidefinite matrices, and using a manifold metric there to perform the identification. Our main result shows that, under dwell-time assumptions, the proposed algorithm is convergent, in the sense that it is guaranteed to identify the system for suitably low noise. In scenarios with larger noise levels, we provide experimental results showing that the proposed method outperforms existing ones. The paper concludes by illustrating these results with academic examples and a non-trivial application: action video segmentation.  more » « less
Award ID(s):
2208182 1808381
NSF-PAR ID:
10447155
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article introduces an isometric manifold embedding data-driven paradigm designed to enable model-free simulations with noisy data sampled from a constitutive manifold. The proposed data-driven approach iterates between a global optimization problem that seeks admissible solutions for the balance principle and a local optimization problem that finds the closest point projection of the Euclidean space that isometrically embeds a nonlinear constitutive manifold. To de-noise the database, a geometric autoencoder is introduced such that the encoder first learns to create an approximated embedding that maps the underlying low-dimensional structure of the high-dimensional constitutive manifold onto a flattened manifold with less curvature. We then obtain the noise-free constitutive responses by projecting data onto a denoised latent space that is completely flat by assuming that the noise and the underlying constitutive signal are orthogonal to each other. Consequently, a projection from the conservative manifold onto this de-noised constitutive latent space enables us to complete the local optimization step of the data-driven paradigm. Finally, to decode the data expressed in the latent space without reintroducing noise, we impose a set of isometry constraints while training the autoencoder such that the nonlinear mapping from the latent space to the reconstructed constituent manifold is distance-preserving. Numerical examples are used to both validate the implementation and demonstrate the accuracy, robustness, and limitations of the proposed paradigm. 
    more » « less
  2. This paper addresses the problem of identification of error in variables switched linear models from experimental input/output data. This problem is known to be generically NP hard and thus computationally expensive to solve. To address this difficulty, several relaxations have been proposed in the past few years. While solvable in polynomial time these (convex) relaxations tend to scale poorly with the number of points and number/order of the subsystems, effectively limiting their applicability to scenarios with relatively small number of data points. To address this difficulty, in this paper we propose an efficient method that only requires performing (number of subsystems) singular value decompositions of matrices whose size is independent of the number of points. The underlying idea is to obtain a sum-of-squares polynomial approximation of the support of each subsystem one-at-a-time, and use these polynomials to segment the data into sets, each generated by a single subsystem. As shown in the paper, exploiting ideas from Christoffel's functions allows for finding these polynomial approximations simply by performing SVDs. The parameters of each subsystem can then be identified from the segmented data using existing error-in-variables (EIV) techniques. 
    more » « less
  3. null (Ed.)
    Abstract Discrete ill-posed inverse problems arise in various areas of science and engineering. The presence of noise in the data often makes it difficult to compute an accurate approximate solution. To reduce the sensitivity of the computed solution to the noise, one replaces the original problem by a nearby well-posed minimization problem, whose solution is less sensitive to the noise in the data than the solution of the original problem. This replacement is known as regularization. We consider the situation when the minimization problem consists of a fidelity term, that is defined in terms of a p -norm, and a regularization term, that is defined in terms of a q -norm. We allow 0 < p , q ≤ 2. The relative importance of the fidelity and regularization terms is determined by a regularization parameter. This paper develops an automatic strategy for determining the regularization parameter for these minimization problems. The proposed approach is based on a new application of generalized cross validation. Computed examples illustrate the performance of the method proposed. 
    more » « less
  4. Principal Component Analysis (PCA) is a standard dimensionality reduction technique, but it treats all samples uniformly, making it suboptimal for heterogeneous data that are increasingly common in modern settings. This paper proposes a PCA variant for samples with heterogeneous noise levels, i.e., heteroscedastic noise, that naturally arise when some of the data come from higher quality sources than others. The technique handles heteroscedasticity by incorporating it in the statistical model of a probabilistic PCA. The resulting optimization problem is an interesting nonconvex problem related to but not seemingly solved by singular value decomposition, and this paper derives an expectation maximization (EM) algorithm. Numerical experiments illustrate the benefits of using the proposed method to combine samples with heteroscedastic noise in a single analysis, as well as benefits of careful initialization for the EM algorithm. 
    more » « less
  5. Robust PCA is a widely used statistical procedure to recover an underlying low-rank matrix with grossly corrupted observations. This work considers the problem of robust PCA as a nonconvex optimization problem on the manifold of low-rank matrices and proposes two algorithms based on manifold optimization. It is shown that, with a properly designed initialization, the proposed algorithms are guaranteed to converge to the underlying lowrank matrix linearly. Compared with a previous work based on the factorization of low-rank matrices Yi et al. (2016), the proposed algorithms reduce the dependence on the condition number of the underlying low-rank matrix theoretically. Simulations and real data examples con rm the competitive performance of our method. 
    more » « less