skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magellan/M2FS and MMT/Hectochelle Spectroscopy of Dwarf Galaxies and Faint Star Clusters within the Galactic Halo*
Abstract We present spectroscopic data for 16,369 stellar targets within and/or toward 38 dwarf spheroidal galaxies and faint star clusters within the Milky Way halo environment. All spectra come from observations with the multiobject, fiber-fed echelle spectrographs M2FS at the Magellan/Clay telescope or Hectochelle at the MMT, reaching a typical limiting magnitudeG≲ 21. Data products include processed spectra from all observations and catalogs listing estimates—derived from template model fitting—of line-of-sight velocity (median uncertainty 1.4 km s−1) effective temperature (255 K), (base-10 logarithm of) surface gravity (0.59 dex in cgs units), [Fe/H] (0.4 dex) and [Mg/Fe] (0.27 dex) abundance ratios. The sample contains multiepoch measurements for 3720 sources, with up to 15 epochs per source, enabling studies of intrinsic spectroscopic variability. The sample contains 6087 likely red giant stars (based on surface gravity), and 4492 likely members (based on line-of-sight velocity and Gaia-measured proper motion) of the target systems. The number of member stars per individual target system ranges from a few, for the faintest systems, to ∼850 for the most luminous. For most systems, our new samples extend over wider fields than have previously been observed; of the likely members in our samples, 820 lie beyond 2 times the projected half-light radius of their host system, and 42 lie beyond 5Rhalf more » « less
Award ID(s):
2206046 1813881 1909584 1815767 1812461 1815403
PAR ID:
10448364
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
268
Issue:
1
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 19
Size(s):
Article No. 19
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.The C-19 stellar stream is the most metal-poor stream known to date. While its wth and velocity dispersion indicate a dwarf galaxy origin, its metallicity spread and abundance patterns are more similar to those of globular clusters (GCs). If it is indeed of GC origin, its extremely low metallicity ([Fe/H]=−3.4, estimated from giant stars) implies that these stellar systems can form out of gas that is as extremely poor in metals as this. Previously, only giant stream stars were observed spectroscopically, although the majority of stream stars are unevolved stars. Aims.We pushed the spectroscopic observations to the subgiant branch stars (G≈ 20) in order to consolate the chemical and dynamical properties of C-19. Methods.We used the high-efficiency spectrograph X-shooter fed by the ESO 8.2m VLT telescope to observe 15 candate subgiant C-19 members. The spectra were used to measure radial velocities and to determine chemical abundances using the MyGIsFOS code. Results.We developed a likelihood model that takes metallicity and radial velocities into account. We conclude that 12 stars are likely members of C-19, while 3 stars (S05, S12, and S13) are likely contaminants. When these 3 stars are excluded, our model implies a mean metallicity 〈[Fe/H]〉 = −3.1 ± 0.1, the mean radial velocity is 〈vr〉 = −192 ± 3km s−1, and the velocity dispersion is σvr= 5.9−5.9+3.6km s−1. This all agrees within errors with previous studies. The A(Mg) of a sample of 15 C-19 members, including 6 giant stars, shows a standard deviation of 0.44 dex, and the mean uncertainty on Mg is 0.25 dex. Conclusions.Our preferred interpretation of the current data is that C-19 is a disrupted GC. We cannot completely rule out the possibility that the GC could have belonged to a dwarf galaxy that contained more metal-rich stars, however. This scenario would explain the radial velocity members at higher metallicity, as well as the wth and velocity dispersion of the stream. In either case, a GC formed out of gas as poor in metals as these stars seems necessary to explain the existence of C-19. The possibility that no GC was associated with C-19 cannot be ruled out either. 
    more » « less
  2. ABSTRACT We present WIYN1/Hydra spectra of 34 red giant candidate members of NGC 188, which, together with WOCS2 and Gaia data yield 23 single members, 6 binary members, 4 single non-members, and 1 binary non-member. We report [Fe/H] for 29 members and derive [Fe/H]NGC188  = +0.064 ± 0.018 dex (σμ) (sky spectra yield A(Fe)⊙  = 7.520 ± 0.015 dex (σμ)). We discuss effects on the derived parameters of varying Yale-Yonsei isochrones to fit the turnoff. We take advantage of the coolest, lowest gravity giants to refine the line list near Li 6707.8 Å. Using synthesis we derive detections of A(Li)3  = 1.17, 1.65, 2.04, and 0.60 dex for stars 4346, 4705, 5027, and 6353, respectively, and 3σ upper limits for the other members. Whereas only two of the detections meet the traditional criterion for ‘Li-richness’ of A(Li) > 1.5 dex, we argue that since the cluster A(Li) vanish as subgiants evolve to the base of the RGB, all four stars are Li-rich in this cluster’s context. An incidence of even a few Li-rich stars in a sample of 29 stars is far higher than what recent large surveys have found in the field. All four stars lie either slightly or substantially away from the cluster fiducial sequence, possibly providing clues about their Li-richness. We discuss a number of possibilities for the origin for the Li in each star, and suggest potentially discriminating future observations. 
    more » « less
  3. ABSTRACT We present and discuss the results of a search for extremely metal-poor stars based on photometry from data release DR1.1 of the SkyMapper imaging survey of the southern sky. In particular, we outline our photometric selection procedures and describe the low-resolution (R ≈ 3000) spectroscopic follow-up observations that are used to provide estimates of effective temperature, surface gravity, and metallicity ([Fe/H]) for the candidates. The selection process is very efficient: of the 2618 candidates with low-resolution spectra that have photometric metallicity estimates less than or equal to −2.0, 41 per cent have [Fe/H] ≤ −2.75 and only approximately seven per cent have [Fe/H] > −2.0 dex. The most metal-poor candidate in the sample has [Fe/H] < −4.75 and is notably carbon rich. Except at the lowest metallicities ([Fe/H] < −4), the stars observed spectroscopically are dominated by a ‘carbon-normal’ population with [C/Fe]1D, LTE ≤ +1 dex. Consideration of the A(C)1D, LTE versus [Fe/H]1D, LTE diagram suggests that the current selection process is strongly biased against stars with A(C)1D, LTE > 7.3 (predominantly CEMP-s) while any bias against stars with A(C)1D, LTE < 7.3 and [C/Fe]1D,LTE > +1 (predominantly CEMP-no) is not readily quantifiable given the uncertainty in the SkyMapper v-band DR1.1 photometry. We find that the metallicity distribution function of the observed sample has a power-law slope of Δ(Log N)/Δ[Fe/H] = 1.5 ± 0.1 dex per dex for −4.0 ≤ [Fe/H] ≤ −2.75, but appears to drop abruptly at [Fe/H] ≈ −4.2, in line with previous studies. 
    more » « less
  4. Abstract The stellar atmospheric parameters and physical properties of stars in the Kepler Input Catalog (KIC) are of great significance for the study of exoplanets, stellar activity, and asteroseismology. However, despite extensive effort over the past decades, accurate spectroscopic estimates of these parameters are available for only about half of the stars in the full KIC. In our work, by training relationships between photometric colors and spectroscopic stellar parameters from Gaia DR3, the Kepler-INT Survey, Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR10, and Galactic Evolution Experiment at Apache Point Observatory DR17, we have obtained atmospheric parameter estimates for over 195,000 stars, accounting for 97% of the total sample of KIC stars. We obtain 1σuncertainties of 0.1 dex on metallicity [Fe/H], 100 K on effective temperatureTeff, and 0.2 dex on surface gravity logg. In addition, based on these atmospheric parameters, we estimated the ages, masses, radii, and surface gravities of these stars using the commonly adopted isochrone-fitting approach. External comparisons indicate that the resulting precision for turnoff stars is 20% in age; for dwarf stars, it is 0.07Min mass, 0.05Rin radius, and 0.12 dex in surface gravity; and for giant stars, it is 0.14Min mass, 0.73Rin radius, and 0.11 dex in surface gravity. 
    more » « less
  5. Context.The inner Galaxy is a complex environment, and the relative contributions of different formation scenarios to its observed morphology and stellar properties are still debated. The different components are expected to have different spatial, kinematic, and metallicity distributions, and a combination of photometric, spectroscopic, and astrometric large-scale surveys is needed to study the formation and evolution of the Galactic bulge. Aims.The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for approximately 250 million unique stars over more than 200 square degrees of the southern Galactic bulge. By combining BDBS photometry with the latestGaiaastrometry, we aim to characterize the chemodynamics of red clump stars across the BDBS footprint using an unprecedented sample size and sky coverage. Methods.Our field of view of interest is |ℓ| ≤ 10°, −10° ≤b ≤ −3°. We constructed a sample of approximately 2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. Photometric metallicities are derived from a (u − i)0versus [Fe/H] relation; astrometry, including precise proper motions, is from the third data release (DR3) of the ESA satelliteGaia. We studied the kinematics of the red clump stars as a function of sky position and metallicity by investigating proper-motion rotation curves, velocity dispersions, and proper-motion correlations across the southern Galactic bulge. Results.By binning our sample into eight metallicity bins in the range of −1.5 dex < [Fe/H] < +1 dex, we find that metal-poor red clump stars exhibit lower rotation amplitudes, at ∼29 km s−1kpc−1. The peak of the angular velocity is ∼39 km s−1kpc−1for [Fe/H] ∼ −0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] ≳ −0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitudeℓ = 0. Conclusions.This work describes the largest sample of bulge stars with distance, metallicity, and astrometry reported to date, and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity, and, for the first time, kinematic differences for stars with [Fe/H]>  − 0.5, suggesting that the bar itself may have kinematics that depends on metallicity. 
    more » « less