skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interpolating Hydrologic Data Using Laplace Formulation
Spatial interpolation techniques play an important role in hydrology, as many point observations need to be interpolated to create continuous surfaces. Despite the availability of several tools and methods for interpolating data, not all of them work consistently for hydrologic applications. One of the techniques, the Laplace Equation, which is used in hydrology for creating flownets, has rarely been used for data interpolation. The objective of this study is to examine the efficiency of Laplace formulation (LF) in interpolating data used in hydrologic applications (hydrologic data) and compare it with other widely used methods such as inverse distance weighting (IDW), natural neighbor, and ordinary kriging. The performance of LF interpolation with other methods is evaluated using quantitative measures, including root mean squared error (RMSE) and coefficient of determination (R2) for accuracy, visual assessment for surface quality, and computational cost for operational efficiency and speed. Data related to surface elevation, river bathymetry, precipitation, temperature, and soil moisture are used for different areas in the United States. RMSE and R2 results show that LF is comparable to other methods for accuracy. LF is easy to use as it requires fewer input parameters compared to inverse distance weighting (IDW) and Kriging. Computationally, LF is faster than other methods in terms of speed when the datasets are not large. Overall, LF offers a robust alternative to existing methods for interpolating various hydrologic data. Further work is required to improve its computational efficiency.  more » « less
Award ID(s):
2033607
PAR ID:
10451725
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
15
Issue:
15
ISSN:
2072-4292
Page Range / eLocation ID:
3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Spatial interpolation is a class of estimation problems where locations with known values are used to estimate values at other locations, with an emphasis on harnessing spatial locality and trends. Traditional kriging methods have strong Gaussian assumptions, and as a result, often fail to capture complexities within the data. Inspired by the recent progress of graph neural networks, we introduce Kriging Convolutional Networks (KCN), a method of combining advantages of Graph Neural Networks (GNN) and kriging. Compared to standard GNNs, KCNs make direct use of neighboring observations when generating predictions. KCNs also contain the kriging method as a specific configuration. Empirically, we show that this model outperforms GNNs and kriging in several applications. 
    more » « less
  2. Abstract Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameterization scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990–2019), high-resolution (250-m) gridded monthly rainfall time series for the state of Hawai‘i. Leave-one-out cross validation (LOOCV) is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observations (R2= 0.78; MAE = 55 mm month−1; 1.4%); however, predictions can underestimate high rainfall observations (bias = 34 mm month−1; −1%) due to a well-known smoothing effect that occurs with kriging. This research highlights the fact that validation statistics should not be the sole source of error assessment and that default parameterizations for automated interpolation may need to be modified to produce realistic gridded rainfall surfaces. Data products can be accessed through the Hawai‘i Data Climate Portal (HCDP;http://www.hawaii.edu/climate-data-portal). Significance StatementA new method is developed to map rainfall in Hawai‘i using an optimized geostatistical kriging approach. A machine learning technique is used to detect erroneous rainfall maps and several conditions are implemented to select the optimal parameterization scheme for fitting the model used in the kriging interpolation. A key finding is that optimization of the interpolation approach is necessary because maps may validate well but have unrealistic spatial patterns. This approach demonstrates how, with a moderate amount of data, a low-level machine learning algorithm can be trained to evaluate and classify an unrealistic map output. 
    more » « less
  3. NASA’s ICESat-2 has been providing sea ice freeboard measurements across the polar regions since October 2018. In spite of the outstanding spatial resolution and precision of ICESat-2, the spatial sparsity of the data can be a critical issue for sea ice monitoring. This study employs a geostatistical approach (i.e., ordinary kriging) to characterize the spatial autocorrelation of the ICESat-2 freeboard measurements (ATL10) to estimate weekly freeboard variations in 2019 for the entire Ross Sea area, including where ICESat-2 tracks are not directly available. Three variogram models (exponential, Gaussian, and spherical) are compared in this study. According to the cross-validation results, the kriging-estimated freeboards show correlation coefficients of 0.56–0.57, root mean square error (RMSE) of ~0.12 m, and mean absolute error (MAE) of ~0.07 m with the actual ATL10 freeboard measurements. In addition, the estimated errors of the kriging interpolation are low in autumn and high in winter to spring, and low in southern regions and high in northern regions of the Ross Sea. The effective ranges of the variograms are 5–10 km and the results from the three variogram models do not show significant differences with each other. The southwest (SW) sector of the Ross Sea shows low and consistent freeboard over the entire year because of the frequent opening of wide polynya areas generating new ice in this sector. However, the southeast (SE) sector shows large variations in freeboard, which demonstrates the advection of thick multiyear ice from the Amundsen Sea into the Ross Sea. Thus, this kriging-based interpolation of ICESat-2 freeboard can be used in the future to estimate accurate sea ice production over the Ross Sea by incorporating other remote sensing data. 
    more » « less
  4. null (Ed.)
    Marine remote sensing provides comprehensive characterizations of the ocean surface across space and time. However, cloud cover is a significant challenge in marine satellite monitoring. Researchers have proposed various algorithms to fill data gaps “below the clouds”, but a comparison of algorithm performance across several geographic regions has not yet been conducted. We compared ten basic algorithms, including data-interpolating empirical orthogonal functions (DINEOF), geostatistical interpolation, and supervised learning methods, in two gap-filling tasks: the reconstruction of chlorophyll a in pixels covered by clouds, and the correction of regional mean chlorophyll a concentrations. For this purpose, we combined tens of cloud-free images with hundreds of cloud masks in four study areas, creating thousands of situations in which to test the algorithms. The best algorithm depended on the study area and task, and differences between the best algorithms were small. Ordinary Kriging, spatiotemporal Kriging, and DINEOF worked well across study areas and tasks. Random forests reconstructed individual pixels most accurately. We also found that high levels of cloud cover led to considerable errors in estimated regional mean chlorophyll a concentration. These errors could, however, be reduced by about 50% to 80% (depending on the study area) with prior cloud-filling. 
    more » « less
  5. null (Ed.)
    Background: Wearable technology is used by clinicians and researchers and play a critical role in biomechanical assessments and rehabilitation. Objective: The purpose of this research is to validate a soft robotic stretch (SRS) sensor embedded in a compression knee brace (smart knee brace) against a motion capture system focusing on knee joint kinematics. Methods: Sixteen participants donned the smart knee brace and completed three separate tasks: non-weight bearing knee flexion/extension, bodyweight air squats, and gait trials. Adjusted R2 for goodness of fit (R2), root mean square error (RMSE), and mean absolute error (MAE) between the SRS sensor and motion capture kinematic data for all three tasks were assessed. Results: For knee flexion/extension: R2 = 0.799, RMSE = 5.470, MAE = 4.560; for bodyweight air squats: R2 = 0.957, RMSE = 8.127, MAE = 6.870; and for gait trials: R2 = 0.565, RMSE = 9.190, MAE = 7.530 were observed. Conclusions: The smart knee brace demonstrated a higher goodness of fit and accuracy during weight-bearing air squats followed by non-weight bearing knee flexion/extension and a lower goodness of fit and accuracy during gait, which can be attributed to the SRS sensor position and orientation, rather than range of motion achieved in each task. 
    more » « less