skip to main content

Title: Comparing Convective Self‐Aggregation in Idealized Models to Observed Moist Static Energy Variability Near the Equator

Idealized convection‐permitting simulations of radiative‐convective equilibrium have become a popular tool for understanding the physical processes leading to horizontal variability of tropical water vapor and rainfall. However, the applicability of idealized simulations to nature is still unclear given that important processes are typically neglected, such as lateral water vapor advection by extratropical intrusions, or interactive ocean coupling. Here, we exploit spectral analysis to compactly summarize the multiscale processes supporting convective aggregation. By applying this framework to high‐resolution reanalysis data and satellite observations in addition to idealized simulations, we compare convective‐aggregation processes across horizontal scales and data sets. The results affirm the validity of the radiative‐convective equilibrium simulations as an analogy to the real world. Column moist static energy tendencies share similar signs and scale selectivity in convection‐permitting models and observations: Radiation increases variance at wavelengths above 1,000 km, while advection damps variance across wavelengths, and surface fluxes mostly reduce variance between 1,000 and 10,000 km.

more » « less
Award ID(s):
1835863 1740533
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Page Range / eLocation ID:
p. 10589-10598
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    On small scales, the tropical atmosphere tends to be either moist or very dry. This defines two states that, on large scales, are separated by a sharp margin, well identified by the antimode of the bimodal tropical column water vapor distribution. Despite recent progress in understanding physical processes governing the spatiotemporal variability of tropical water vapor, the behavior of this margin remains elusive, and we lack a simple framework to understand the bimodality of tropical water vapor in observations. Motivated by the success of coarsening theory in explaining bimodal distributions, we leverage its methodology to relate the moisture field's spatial organization to its time evolution. This results in a new diagnostic framework for the bimodality of tropical water vapor, from which we argue that the length of the margin separating moist from dry regions should evolve toward a minimum in equilibrium. As the spatial organization of moisture is closely related to the organization of tropical convection, we hereby introduce a new convective organization index (BLW) measuring the ratio of the margin's length to the circumference of a well‐defined equilibrium shape. Using BLW, we assess the evolution of self‐aggregation in idealized cloud‐resolving simulations of radiative‐convective equilibrium and contrast it to the time evolution of the Atlantic Intertropical Convergence Zone (ITCZ) in the ERA5 meteorological reanalysis product. We find that BLW successfully captures aspects of convective organization ignored by more traditional metrics, while offering a new perspective on the seasonal cycle of convective organization in the Atlantic ITCZ.

    more » « less
  2. Abstract

    In a modeled environment of rotating radiative‐convective equilibrium (RCE), convective self‐aggregation may take the form of spontaneous tropical cyclogenesis. We investigate the processes leading to tropical cyclogenesis in idealized simulations with a three‐dimensional cloud‐permitting model configured in rotating RCE, in which the background planetary vorticity is varied acrossf‐plane cases to represent a range of deep tropical and near‐equatorial environments. Convection is initialized randomly in an otherwise homogeneous environment, with no background wind, precursor disturbance, or other synoptic‐scale forcing. We examine the dynamic and thermodynamic evolution of cyclogenesis in these experiments and compare the physical mechanisms to current theories. All simulations with planetary vorticity corresponding to latitudes from 10°–20° generate intense tropical cyclones, with maximum wind speeds of 80 m s−1or above. Time to genesis varies widely, even within a five‐member ensemble of 20° simulations, indicating large stochastic variability. Shared across the 10°–20° group is the emergence of a midlevel vortex in the days leading to genesis, which has dynamic and thermodynamic implications on its environment that facilitate the spin‐up of a low‐level vortex. Tropical cyclogenesis is possible in this model at values of Coriolis parameter as low as that representative of 1°. In these experiments, convection self‐aggregates into a quasicircular cluster, which then begins to rotate and gradually strengthen into a tropical storm, aided by strong near‐surface inflow that is already established days prior. Other experiments at these lower Coriolis parameters instead self‐aggregate into a nonrotating elongated band and fail to undergo cyclogenesis over the 100‐day simulation.

    more » « less
  3. There is no consensus on the physical mechanisms controlling the scale at which convective activity organizes near the Equator. Here, we introduce a diagnostic framework relating the evolution of the length‐scale of convective aggregation to the net radiative heating, the surface enthalpy flux, and horizontal energy transport. We evaluate these expansion tendencies of convective aggregation in 20 high‐resolution cloud‐permitting simulations of radiative‐convective equilibrium. While both radiative fluxes contribute to convective aggregation, the net long‐wave radiative flux operates at large scales (1,000–5,000 km) and stretches the size of moist and dry regions, while the net short‐wave flux operates at smaller scales (500–2,000 km) and shrinks it. The surface flux expansion tendency is dominated by convective gustiness, which acts to aggregate convective activity at smaller scales (500–3,000 km).

    more » « less
  4. Abstract. The tropical tropopause layer (TTL) is a sea of vertical motions. Convectively generated gravity waves create vertical winds on scales of a few to thousands of kilometers as they propagate in a stable atmosphere. Turbulence from gravity wave breaking, radiatively driven convection, and Kelvin–Helmholtz instabilities stirs up the TTL on the kilometer scale. TTL cirrus clouds, which moderate the water vapor concentration in the TTL and stratosphere, form in the cold phases of large-scale (> 100 km) wave activity. It has been proposed in several modeling studies that small-scale (< 100 km) vertical motions control the ice crystal number concentration and the dehydration efficiency of TTL cirrus clouds. Here, we present the first observational evidence for this. High-rate vertical winds measured by aircraft are a valuable and underutilized tool for constraining small-scale TTL vertical wind variability, examining its impacts on TTL cirrus clouds, and evaluating atmospheric models. We use 20 Hz data from five National Aeronautics and Space Administration (NASA) campaigns to quantify small-scale vertical wind variability in the TTL and to see how it varies with ice water content, distance from deep convective cores, and height in the TTL. We find that 1 Hz vertical winds are well represented by a normal distribution, with a standard deviation of 0.2–0.4 m s−1. Consistent with a previous observational study that analyzed two out of the five aircraft campaigns that we analyze here, we find that turbulence is enhanced over the tropical west Pacific and within 100 km of convection and is most common in the lower TTL (14–15.5 km), closer to deep convection, and in the upper TTL (15.5–17 km), further from deep convection. An algorithm to classify turbulence and long-wavelength (5 km < λ < 100 km) and short-wavelength (λ < 5 km) gravity wave activity during level flight legs is applied to data from the Airborne Tropical TRopopause EXperiment (ATTREX). The most commonly sampled conditions are (1) a quiescent atmosphere with negligible small-scale vertical wind variability, (2) long-wavelength gravity wave activity (LW GWA), and (3) LW GWA with turbulence. Turbulence rarely occurs in the absence of gravity wave activity. Cirrus clouds with ice crystal number concentrations exceeding 20 L−1 and ice water content exceeding 1 mg m−3 are rare in a quiescent atmosphere but about 20 times more likely when there is gravity wave activity and 50 times more likely when there is also turbulence, confirming the results of the aforementioned modeling studies. Our observational analysis shows that small-scale gravity waves strongly influence the ice crystal number concentration and ice water content within TTL cirrus clouds. Global storm-resolving models have recently been run with horizontal grid spacing between 1 and 10 km, which is sufficient to resolve some small-scale gravity wave activity. We evaluate simulated vertical wind spectra (10–100 km) from four global storm-resolving simulations that have horizontal grid spacing of 3–5 km with aircraft observations from ATTREX. We find that all four models have too little resolved vertical wind at horizontal wavelengths between 10 and 100 km and thus too little small-scale gravity wave activity, although the bias is much less pronounced in global SAM than in the other models. We expect that deficient small-scale gravity wave activity significantly limits the realism of simulated ice microphysics in these models and that improved representation requires moving to finer horizontal and vertical grid spacing. 
    more » « less
  5. Abstract

    The uncertainty in polar cloud feedbacks calls for process understanding of the cloud response to climate warming. As an initial step toward improved process understanding, we investigate the seasonal cycle of polar clouds in the current climate by adopting a novel modeling framework using large eddy simulations (LES), which explicitly resolve cloud dynamics. Resolved horizontal and vertical advection of heat and moisture from an idealized general circulation model (GCM) are prescribed as forcing in the LES. The LES are also forced with prescribed sea ice thickness, but surface temperature, atmospheric temperature, and moisture evolve freely without nudging. A semigray radiative transfer scheme without water vapor and cloud feedbacks allows the GCM and LES to achieve closed energy budgets more easily than would be possible with more complex schemes. This enables the mean states in the two models to be consistently compared, without the added complications from interaction with more comprehensive radiation. We show that the LES closely follow the GCM seasonal cycle, and the seasonal cycle of low‐level clouds in the LES resembles observations: maximum cloud liquid occurs in late summer and early autumn, and winter clouds are dominated by ice in the upper troposphere. Large‐scale advection of moisture provides the main source of water vapor for the liquid‐containing clouds in summer, while a temperature advection peak in winter makes the atmosphere relatively dry and reduces cloud condensate. The framework we develop and employ can be used broadly for studying cloud processes and the response of polar clouds to climate warming.

    more » « less