Abstract The evolution of the spatial pattern of ocean surface warming affects global radiative feedback, yet different climate models provide varying estimates of future patterns. Paleoclimate data, especially from past warm periods, can help constrain future equilibrium warming patterns. By analyzing marine temperature records spanning the past 10 million years with a regression‐based technique that removes temporal dimensions, we extract long‐term ocean warming patterns and quantify relative sea surface temperature changes across the global ocean. This analysis revealed a distinct pattern of amplified warming that aligns with equilibrated model simulations under high CO2conditions, yet differs from the transient warming pattern observed over the past 160 years. This paleodata‐model comparison allows us to identify models that better capture fundamental aspects of Earth's warming response, while suggesting how ocean heat uptake and circulation changes modify the development of warming patterns over time. By combining this paleo‐ocean warming pattern with equilibrated model simulations, we characterized the likely evolution of global ocean warming as the climate system approaches equilibrium.
more »
« less
Persistent high latitude amplification of the Pacific Ocean over the past 10 million years
Abstract While high latitude amplification is seen in modern observations, paleoclimate records, and climate modeling, better constraints on the magnitude and pattern of amplification would provide insights into the mechanisms that drive it, which remain actively debated. Here we present multi-proxy multi-site paleotemperature records over the last 10 million years from the Western Pacific Warm Pool (WPWP) – the warmest endmember of the global ocean that is uniquely important in the global radiative feedback change. These sea surface temperature records, based on lipid biomarkers and seawater Mg/Ca-adjusted foraminiferal Mg/Ca, unequivocally show warmer WPWP in the past, and a secular cooling over the last 10 million years. Compiling these data with existing records reveals a persistent, nearly stationary, extratropical response pattern in the Pacific in which high latitude (~50°N) temperatures increase by ~2.4° for each degree of WPWP warming. This relative warming pattern is also evident in model outputs of millennium-long climate simulations with quadrupling atmospheric CO 2 , therefore providing a strong constraint on the future equilibrium response of the Earth System.
more »
« less
- PAR ID:
- 10462114
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The tropical Pacific climate has an outsized impact on global climate, yet future projections are poorly constrained. Data‐model comparisons from the mid‐Pliocene warm period (3.3 million years ago) can help investigate warm climate dynamics and evaluate model behavior. Here we compare proxy records to PlioMIP2 models and a model with modified cloud albedo. Relative to modern, the mid‐Pliocene warm period records show subsurface warming across the tropical Pacific, strong eastern Pacific surface warming and weak western Pacific surface warming. Using clustering analyses to group model behavior relative to the proxy data, we find the model cluster with the best fit with the proxy data has enhanced warming in mid‐latitude thermocline source water regions which connect to the equator through the ventilated thermocline. Our study shows tropical ocean heat content during the mid‐Pliocene warm period was higher than today and has broad implications for the ocean's ability to absorb anthropogenic heat.more » « less
-
Abstract. Climate variability is typically amplified towards polar regions. The underlying causes, notably albedo and humidity changes, are challenging to accurately quantify with observations or models, thus hampering projections of future polar amplification. Polar amplification reconstructions from the ice-free early Eocene (∼56–48 Ma) can exclude ice albedo effects, but the required tropical temperature records for resolving timescales shorter than multi-million years are lacking. Here, we reconstruct early Eocene tropical sea surface temperature variability by presenting an up to ∼4 kyr resolution biomarker-based temperature record from Ocean Drilling Program (ODP) Site 959, located in the tropical Atlantic Ocean. This record shows warming across multiple orbitally paced carbon cycle perturbations, coeval with high-latitude-derived deep-ocean bottom waters, showing that these events represent transient global warming events (hyperthermals). This implies that orbital forcing caused global temperature variability through carbon cycle feedbacks. Importantly, deep-ocean temperature variability was amplified by a factor of 1.7–2.3 compared to the tropical surface ocean, corroborating available long-term estimates. This implies that fast atmospheric feedback processes controlled meridional temperature gradients on multi-million year, as well as orbital, timescales during the early Eocene. Our combined records have several other implications. First, our amplification factor is somewhat larger than the same metric in fully coupled simulations of the early Eocene (1.1–1.3), suggesting that models slightly underestimate the non-ice-related – notably hydrological – feedbacks that cause polar amplification of climate change. Second, even outside the hyperthermals, we find synchronous eccentricity-forced temperature variability in the tropics and deep ocean that represent global mean sea surface temperature variability of up to 0.7 °C, which requires significant variability in atmospheric pCO2. We hypothesize that the responsible carbon cycle feedbacks that are independent of ice, snow, and frost-related processes might play an important role in Phanerozoic orbital-scale climate variability throughout geological time, including Pleistocene glacial–interglacial climate variability.more » « less
-
Abstract The western Pacific warm pool (WPWP) is the heat engine of the global climate system delivering vast amounts of heat and moisture to the atmosphere. Controls on regional convection, however, are numerous, making it difficult to simulate past and future changes in WPWP hydroclimate with confidence. Here, we synthesize new and previously available precipitation sensitive records from the WPWP spanning the last and present interglacial periods. We find two primary modes of rainfall variability, both driven by precession forcing, that are common to both interglacial periods: (a) a contraction of the tropical rain band across the interglacial and (b) a mid‐interglacial strengthening of the Pacific Walker Circulation (PWC). We further demonstrate that while the amplitude of the change in seasonal insolation across the Holocene is far lower than during the LIG due to the low eccentricity state of Earth's orbit, the response of regional rainfall is comparable during both interglacials, indicating a nonlinear response to the insolation forcing. Finally, we suggest an enhanced sensitivity of the PWC to non‐insolation climate forcing, including greenhouse gases and sea level change, under strongly reduced boreal fall insolation as observed during the late Holocene and late LIG.more » « less
-
Abstract Peak Neogene warmth and minimal polar ice volumes occurred during the Miocene Climatic Optimum (MCO, ca. 16.95–13.95 Ma) followed by cooling and ice sheet expansion during the Middle Miocene Climate Transition (MMCT, ca. 13.95–12.8 Ma). Previous records of northern high-latitude sea surface temperatures (SSTs) during these global climatic transitions are limited to Atlantic sites, and none resolve orbital-scale variability. Here, we present an orbital-resolution alkenone SST proxy record from the subpolar North Pacific that establishes a local maximum of SSTs during the MCO as much as 16 °C warmer than modern with rapid warming initiating the MCO, cooling synchronous with Antarctic ice sheet expansion during the MMCT, and high variability on orbital time scales. Persistently cooler North Pacific SST anomalies than in the Atlantic at equivalent latitudes throughout the Miocene suggest enhanced Atlantic northward heat transport under a globally warm climate. We conclude that a global forcing mechanism, likely elevated greenhouse gas concentrations, is the most parsimonious explanation for synchronous global high-latitude warmth during the Miocene.more » « less
An official website of the United States government

