skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Efficient Strategy to Count Cycles in the Tanner Graph of Quasi-Cyclic LDPC Codes
In this paper, we present an efficient strategy to enumerate the number of k-cycles, g≤k<2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (dv,dc)-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)(HHT)m/2H(m2), where m≥0. We provide formulas for the number of k-cycles, Nk, by just taking into account repetitions in some multisets constructed from the matrices Bm(H). This approach is shown to have low complexity. For example, in the case of QC-LDPC codes based on the 3×nv fully-connected protograph, the complexity of determining Nk, for k=4,6,8,10 and 12, is O(nv2log(N)), O(nv2log(nv)log(N)), O(nv4log4(nv)log(N)), O(nv4log(nv)log(N)) and O(nv6log6(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes.  more » « less
Award ID(s):
1757207 2148358 2145917 1914635
PAR ID:
10463749
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Journal on Selected Areas in Information Theory
ISSN:
2641-8770
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present an efficient strategy to enumerate the number of k-cycles, g ≤ k < +2g, in the Tanner graph of a quasi-cyclic low-density parity-check (QC-LDPC) code with girth g using its polynomial parity-check matrix H. This strategy works for both (n c , n v )-regular and irregular QC-LDPC codes. In this approach, we note that the mth power of the polynomial adjacency matrix can be used to describe walks of length m in the protograph and can therefore be sufficiently described by the matrices Bm(H)≜(HH⊤)⌊m/2⌋H(mmod2), where m ≥ 0. For example, in the case of QC-LDPC codes based on the 3 × n v fully-connected protograph, the complexity of determining the number of k-cycles, Nk, for k = 4, 6 and 8, is O(n2vlog(N)), O(n2vlog(nv)log(N)) and O(n4vlog4(nv)log(N)), respectively. The complexity, depending logarithmically on the lifting factor N, gives our approach, to the best of our knowledge, a significant advantage over previous works on the cycle distribution of QC-LDPC codes. 
    more » « less
  2. This paper gives a simple method to construct generator matrices with polynomial entries (and hence offers an alternative encoding method to the one commonly used) for all quasi-cyclic low-density parity-check (QC-LDPC) codes, even for those that are rank deficient. The approach is based on constructing a set of codewords with the desired total rank by using minors of the parity-check matrix. We exemplify the method on several well-known and standard codes. Moreover, we explore the connections between the minors of the parity-check matrix and the known upper bound on minimum distance and provide a method to compute the rank of any parity-check matrix representing a QC-LDPC code, and hence the dimension of the code, by using the minors of the corresponding polynomial parity-check matrix. 
    more » « less
  3. In this paper, a method for joint source-channel coding (JSCC) based on concatenated spatially coupled low-density parity-check (SC-LDPC) codes is investigated. A construction consisting of two SC-LDPC codes is proposed: one for source coding and the other for channel coding, with a joint belief propagation-based decoder. Also, a novel windowed decoding (WD) scheme is presented with significantly reduced latency and complexity requirements. The asymptotic behavior for various graph node degrees is analyzed using a protograph-based Extrinsic Information Transfer (EXIT) chart analysis for both LDPC block codes with block decoding and for SC-LDPC codes with the WD scheme, showing robust performance for concatenated SC-LDPC codes. Simulation results show a notable performance improvement compared to existing state-of-the-art JSCC schemes based on LDPC codes with comparable latency and complexity constraints. 
    more » « less
  4. The new 5G communications standard increases data rates and supports low-latency communication that places constraints on the computational complexity of channel decoders. 5G low-density parity-check (LDPC) codes have the so-called protograph-based raptor-like (PBRL) structure which offers inherent rate-compatibility and excellent performance. Practical LDPC decoder implementations use message-passing decoding with finite precision, which becomes coarse as complexity is more severely constrained. Performance degrades as the precision becomes more coarse. Recently, the information bottleneck (IB) method was used to design mutual-information-maximizing lookup tables that replace conventional finite-precision node computations. The IB approach exchanges messages represented by integers with very small bit width. This paper extends the IB principle to the flexible class of PBRL LDPC codes as standardized in 5G. The extensions include puncturing and rate-compatible IB decoder design. As an example of the new approach, a 4-bit information bottleneck decoder is evaluated for PBRL LDPC codes over a typical range of rates. Frame error rate simulations show that the proposed scheme outperforms offset min-sum decoding algorithms and operates very close to double-precision sum-product belief propagation decoding. 
    more » « less
  5. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    We study the Matrix Multiplication Verification Problem (MMV) where the goal is, given three n × n matrices A, B, and C as input, to decide whether AB = C. A classic randomized algorithm by Freivalds (MFCS, 1979) solves MMV in Õ(n²) time, and a longstanding challenge is to (partially) derandomize it while still running in faster than matrix multiplication time (i.e., in o(n^ω) time). To that end, we give two algorithms for MMV in the case where AB - C is sparse. Specifically, when AB - C has at most O(n^δ) non-zero entries for a constant 0 ≤ δ < 2, we give (1) a deterministic O(n^(ω-ε))-time algorithm for constant ε = ε(δ) > 0, and (2) a randomized Õ(n²)-time algorithm using δ/2 ⋅ log₂ n + O(1) random bits. The former algorithm is faster than the deterministic algorithm of Künnemann (ESA, 2018) when δ ≥ 1.056, and the latter algorithm uses fewer random bits than the algorithm of Kimbrel and Sinha (IPL, 1993), which runs in the same time and uses log₂ n + O(1) random bits (in turn fewer than Freivalds’s algorithm). Our algorithms are simple and use techniques from coding theory. Let H be a parity-check matrix of a Maximum Distance Separable (MDS) code, and let G = (I | G') be a generator matrix of a (possibly different) MDS code in systematic form. Our deterministic algorithm uses fast rectangular matrix multiplication to check whether HAB = HC and H(AB)^T = H(C^T), and our randomized algorithm samples a uniformly random row g' from G' and checks whether g'AB = g'C and g'(AB)^T = g'C^T. We additionally study the complexity of MMV. We first show that all algorithms in a natural class of deterministic linear algebraic algorithms for MMV (including ours) require Ω(n^ω) time. We also show a barrier to proving a super-quadratic running time lower bound for matrix multiplication (and hence MMV) under the Strong Exponential Time Hypothesis (SETH). Finally, we study relationships between natural variants and special cases of MMV (with respect to deterministic Õ(n²)-time reductions). 
    more » « less