skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective Seed-Guided Topic Discovery by Integrating Multiple Types of Contexts
Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user’s interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seedguided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches.  more » « less
Award ID(s):
1956151 1741317 1704532 2019897
PAR ID:
10467092
Author(s) / Creator(s):
; ; ; ; ;
Corporate Creator(s):
Editor(s):
Proceedings of the Sixteenth 
Publisher / Repository:
ACM
Date Published:
Edition / Version:
1
ISBN:
9781450394079
Page Range / eLocation ID:
429 to 437
Subject(s) / Keyword(s):
Seed-Guided Topic Discovery, Integrating Multiple Types of Contexts, Topic mining, text mining
Format(s):
Medium: X
Location:
Singapore Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent years have witnessed the enormous success of text representation learning in a wide range of text mining tasks. Earlier word embedding learning approaches represent words as fixed low-dimensional vectors to capture their semantics. The word embeddings so learned are used as the input features of task-specific models. Recently, pre-trained language models (PLMs), which learn universal language representations via pre-training Transformer-based neural models on large-scale text corpora, have revolutionized the natural language processing (NLP) field. Such pre-trained representations encode generic linguistic features that can be transferred to almost any text-related applications. PLMs outperform previous task-specific models in many applications as they only need to be fine-tuned on the target corpus instead of being trained from scratch. In this tutorial, we introduce recent advances in pre-trained text embeddings and language models, as well as their applications to a wide range of text mining tasks. Specifically, we first overview a set of recently developed self-supervised and weakly-supervised text embedding methods and pre-trained language models that serve as the fundamentals for downstream tasks. We then present several new methods based on pre-trained text embeddings and language models for various text mining applications such as topic discovery and text classification. We focus on methods that are weakly-supervised, domain-independent, language-agnostic, effective and scalable for mining and discovering structured knowledge from large-scale text corpora. Finally, we demonstrate with real world datasets how pre-trained text representations help mitigate the human annotation burden and facilitate automatic, accurate and efficient text analyses. 
    more » « less
  2. Researchers using social media data want to understand the discussions occurring in and about their respective fields. These domain experts often turn to topic models to help them see the entire landscape of the conversation, but unsupervised topic models often produce topic sets that miss topics experts expect or want to see. To solve this problem, we propose Guided Topic-Noise Model (GTM), a semi-supervised topic model designed with large domain-specific social media data sets in mind. The input to GTM is a set of topics that are of interest to the user and a small number of words or phrases that belong to those topics. These seed topics are used to guide the topic generation process, and can be augmented interactively, expanding the seed word list as the model provides new relevant words for different topics. GTM uses a novel initialization and a new sampling algorithm called Generalized Polya Urn (GPU) seed word sampling to produce a topic set that includes expanded seed topics, as well as new unsupervised topics. We demonstrate the robustness of GTM on open-ended responses from a public opinion survey and four domain-specific Twitter data sets. 
    more » « less
  3. Existing approaches for learning word embedding often assume there are sufficient occurrences for each word in the corpus, such that the representation of words can be accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary (a.k.a. OOV) words that do not appear in training corpus emerge frequently. How to learn accurate representations of these words to augment a pre-trained embedding by only a few observations is a challenging research problem. In this paper, we formulate the learning of OOV embedding as a few-shot regression problem by fitting a representation function to predict an oracle embedding vector (defined as embedding trained with abundant observations) based on limited contexts. Specifically, we propose a novel hierarchical attention network-based embedding framework to serve as the neural regression function, in which the context information of a word is encoded and aggregated from K observations. Furthermore, we propose to use Model-Agnostic Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly. Experiments show that the proposed approach significantly outperforms existing methods in constructing an accurate embedding for OOV words and improves downstream tasks when the embedding is utilized. 
    more » « less
  4. Classification and topic modeling are popular techniques in machine learning that extract information from large-scale datasets. By incorporating a priori information such as labels or important features, methods have been developed to perform classification and topic modeling tasks; however, most methods that can perform both do not allow for guidance of the topics or features. In this paper, we propose a novel method, namely Guided Semi-Supervised Non-negative Matrix Factorization (GSSNMF), that performs both classification and topic modeling by incorporating supervision from both pre-assigned document class labels and user-designed seed words. We test the performance of this method on legal documents provided by the California Innocence Project and the 20 Newsgroups dataset. Our results show that the proposed method improves both classification accuracy and topic coherence in comparison to past methods such as Semi-Supervised Non-negative Matrix Factorization (SSNMF), Guided Non-negative Matrix Factorization (Guided NMF), and Topic Supervised NMF. 
    more » « less
  5. With the advent of pre-trained language models (LMs), increasing research efforts have been focusing on infusing commonsense and domain-specific knowledge to prepare LMs for downstream tasks. These works attempt to leverage knowledge graphs, the de facto standard of symbolic knowledge representation, along with pre-trained LMs. While existing approaches leverage external knowledge, it remains an open question how to jointly incorporate knowledge graphs represented in varying contexts — from local (e.g., sentence), document-level, to global knowledge, to enable knowledge-rich and interpretable exchange across contexts. In addition, incorporating varying contexts can especially benefit long document understanding tasks that leverage pre-trained LMs, typically bounded by the input sequence length. In light of these challenges, we propose KALM, a language model that jointly leverages knowledge in local, document-level, and global contexts for long document understanding. KALM firstly encodes long documents and knowledge graphs into the three knowledge-aware context representations. KALM then processes each context with context-specific layers. These context-specific layers are followed by a ContextFusion layer that facilitates knowledge exchange to derive an overarching document representation. Extensive experiments demonstrate that KALM achieves state-of-the-art performance on three long document understanding tasks across 6 datasets/settings. Further analyses reveal that the three knowledge-aware contexts are complementary and they all contribute to model performance, while the importance and information exchange patterns of different contexts vary on different tasks and datasets. 
    more » « less