skip to main content

Title: Accounting for herbaceous communities in process‐based models will advance our understanding of “grassy” ecosystems

Grassland and other herbaceous communities cover significant portions of Earth's terrestrial surface and provide many critical services, such as carbon sequestration, wildlife habitat, and food production. Forecasts of global change impacts on these services will require predictive tools, such as process‐based dynamic vegetation models. Yet, model representation of herbaceous communities and ecosystems lags substantially behind that of tree communities and forests. The limited representation of herbaceous communities within models arises from two important knowledge gaps: first, our empirical understanding of the principles governing herbaceous vegetation dynamics is either incomplete or does not provide mechanistic information necessary to drive herbaceous community processes with models; second, current model structure and parameterization of grass and other herbaceous plant functional types limits the ability of models to predict outcomes of competition and growth for herbaceous vegetation. In this review, we provide direction for addressing these gaps by: (1) presenting a brief history of how vegetation dynamics have been developed and incorporated into earth system models, (2) reporting on a model simulation activity to evaluate current model capability to represent herbaceous vegetation dynamics and ecosystem function, and (3) detailing several ecological properties and phenomena that should be a focus for both empiricists and modelers to improve representation of herbaceous vegetation in models. Together, empiricists and modelers can improve representation of herbaceous ecosystem processes within models. In so doing, we will greatly enhance our ability to forecast future states of the earth system, which is of high importance given the rapid rate of environmental change on our planet.

more » « less
Award ID(s):
2128303 2128302 1831944 1655499 1929393
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;   « less
Publisher / Repository:
Date Published:
Journal Name:
Global Change Biology
Medium: X Size: p. 6453-6477
p. 6453-6477
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics inESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real‐world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first‐generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter‐disciplinary communication.

    more » « less
  2. Summary

    Earth system models must predict forest responses to global change in order to simulate future global climate, hydrology, and ecosystem dynamics. These models are increasingly adopting vegetation demographic approaches that explicitly represent tree growth, mortality, and recruitment, enabling advances in the projection of forest vulnerability and resilience, as well as evaluation with field data. To date, simulation of regeneration processes has received far less attention than simulation of processes that affect growth and mortality, in spite of their critical role maintaining forest structure, facilitating turnover in forest composition over space and time, enabling recovery from disturbance, and regulating climate‐driven range shifts. Our critical review of regeneration process representations within current Earth system vegetation demographic models reveals the need to improve parameter values and algorithms for reproductive allocation, dispersal, seed survival and germination, environmental filtering in the seedling layer, and tree regeneration strategies adapted to wind, fire, and anthropogenic disturbance regimes. These improvements require synthesis of existing data, specific field data‐collection protocols, and novel model algorithms compatible with global‐scale simulations. Vegetation demographic models offer the opportunity to more fully integrate ecological understanding into Earth system prediction; regeneration processes need to be a critical part of the effort.

    more » « less
  3. Abstract

    Plant functional traits provide a link in process‐based vegetation models between plant‐level physiology and ecosystem‐level responses. Recent advances in physiological understanding and computational efficiency have allowed for the incorporation of plant hydraulic processes in large‐scale vegetation models. However, a more mechanistic representation of water limitation that determines ecosystem responses to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant carbon allocation, particularly allocation to leaf area. In this review, we examine model representations of plant allocation to leaves, which is often empirically set by plant functional type‐specific allometric relationships. We analyze the evolution of the representation of leaf allocation in models of different scales and complexities. We show the impacts of leaf allocation strategy on plant carbon uptake in the context of recent advancements in modeling hydraulic processes. Finally, we posit that deriving allometry from first principles using mechanistic hydraulic processes is possible and should become standard practice, rather than using prescribed allometries. The representation of allocation as an emergent property of scarce resource constraints is likely to be critical to representing how global change processes impact future ecosystem dynamics and carbon fluxes and may reduce the number of poorly constrained parameters in vegetation models.

    more » « less
  4. Abstract

    In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery. A new era of data‐model integration requires investment in accessible, scalable, and transparent tools that integrate the expertise of the whole community, including both modelers and empiricists. This roadmap focuses on five key opportunities for community tools: the underlying foundations of community cyberinfrastructure; data ingest; calibration of models to data; model‐data benchmarking; and data assimilation and ecological forecasting. This community‐driven approach is a key to meeting the pressing needs of science and society in the 21st century.

    more » « less
  5. Abstract

    Ice cover plays a critical role in physical, biogeochemical, and ecological processes in lakes. Despite its importance, winter limnology remains relatively understudied. Here, we provide a primer on the predominant drivers of freshwater lake ice cover and the current methodologies used to study lake ice, including in situ and remote sensing observations, physical based models, and experiments. We highlight opportunities for future research by integrating these four disciplines to address key knowledge gaps in our understanding of lake ice dynamics in changing winters. Advances in technology, data integration, and interdisciplinary collaboration will allow the field to move toward developing global forecasts of lake ice cover for small to large lakes across broad spatial and temporal scales, quantifying ice quality and ice thickness, moving from binary to continuous ice records, and determining how winter ice conditions and quality impact ecosystem processes in lakes over winter. Ultimately, integrating disciplines will improve our ability to understand the impacts of changing winters on lake ice.

    more » « less