skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous Global Ionospheric Disturbances Associated With Penetration Electric Fields During Intense and Minor Solar and Geomagnetic Disturbances
Abstract A new observational phenomenon, named Simultaneous Global Ionospheric Density Disturbance (SGD), is identified in GNSS total electron content (TEC) data during periods of three typical geospace disturbances: a Coronal Mass Ejection‐driven severe disturbance event, a high‐speed stream event, and a minor disturbance day with a maximum Kp of 4. SGDs occur frequently on dayside and dawn sectors, with a ∼1% TEC increase. Notably, SGDs can occur under minor solar‐geomagnetic disturbances. SGDs are likely caused by penetration electric fields (PEFs) of solar‐geomagnetic origin, as they are associated with Bz southward, increased auroral AL/AU, and solar wind pressure enhancements. These findings offer new insights into the nature of PEFs and their ionospheric impact while confirming some key earlier results obtained through alternative methods. Importantly, the accessibility of extensive GNSS networks, with at least 6,000 globally distributed receivers for ionospheric research, means that rich PEF information can be acquired, offering researchers numerous opportunities to investigate geospace electrodynamics.  more » « less
Award ID(s):
2149698 2033787 1952737 2055192
PAR ID:
10468864
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
19
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. During minor to moderate geomagnetic storms, caused by corotatinginteraction regions (CIRs) at the leading edge of high-speed streams (HSSs), solar windAlfvén waves modulated the magnetic reconnection at the daysidemagnetopause. The Resolute Bay Incoherent Scatter Radars (RISR-C andRISR-N), measuring plasma parameters in the cusp and polar cap, observedionospheric signatures of flux transfer events (FTEs) that resulted in theformation of polar cap patches. The patches were observed as they moved over the RISR, and the Canadian High-Arctic Ionospheric Network (CHAIN)ionosondes and GPS receivers. The coupling process modulated the ionospheric convection and the intensity of ionospheric currents, including the auroral electrojets. The horizontal equivalent ionospheric currents (EICs) are estimated from ground-based magnetometer data using an inversion technique. Pulses of ionospheric currents that are a source of Joule heating in the lower thermosphere launched atmospheric gravity waves, causing travelingionospheric disturbances (TIDs) that propagated equatorward. The TIDs wereobserved in the SuperDual Auroral Radar Network (SuperDARN) high-frequency (HF) radar groundscatter and the detrended total electron content (TEC) measured by globallydistributed Global Navigation Satellite System (GNSS) receivers. 
    more » « less
  2. Abstract This study has developed a new TEC‐based ionospheric data assimilation system for 3‐D regional ionospheric imaging over the South American sector (TIDAS‐SA) (45°S–15°N, 35°–85°W, and 100–800 km). The TIDAS‐SA data assimilation system utilizes a hybrid Ensemble‐Variational approach to incorporate a diverse set of ionospheric data sources, including dense ground‐based Global Navigation Satellite System (GNSS) line‐of‐sight Total Electron Content (TEC) data, radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (COSMIC‐2), and altimeter TEC data from the JASON‐3 satellite. TIDAS‐SA can produce a reanalyzed three‐dimensional (3‐D) electron density spatial variation with a high time cadence, yielding spatial‐temporal resolution of 1° (latitude) × 1° (longitude) × 20 km (altitude) × 5 min. This allows us to reconstruct and study the 3‐D ionospheric morphology with multi‐scale structures. The performance of the data assimilation system is validated against independent ionosonde and in situ measurements through an experiment for a strong geomagnetic storm event on 03–04 November 2021. The results demonstrate that TIDAS‐SA can provide detailed and altitude‐resolved information that accurately characterizes the storm‐time ionospheric disturbances in vertical and horizontal domains over the equatorial and low‐latitude regions of South America. 
    more » « less
  3. Abstract Medium‐scale Traveling Ionospheric Disturbances (MSTIDs) are prominent and ubiquitous features of the mid‐latitude ionosphere, and are observed in Super Dual Auroral Radar Network (SuperDARN) and high‐resolution Global Navigational Satellite Service (GNSS) Total Electron Content (TEC) data. The mechanisms driving these MSTIDs are an open area of research, especially during geomagnetic storms. Previous studies have demonstrated that nightside MSTIDs are associated with an electrodynamic instability mechanism like Perkins, especially during geomagnetically quiet conditions. However, dayside MSTIDs are often associated with atmospheric gravity waves. Very few studies have analyzed the mechanisms driving MSTIDs during strong geomagnetic storms at mid‐latitudes. In this study, we present mid‐latitude MSTIDs observed in de‐trended GNSS TEC data and SuperDARN radars over the North American sector, during a geomagnetic storm (peakKpreaching 9) on 7–8 September 2017. In SuperDARN, MSTIDs were observed in ionospheric backscatter with Line of Sight (LOS) velocities exceeding 800 m/s. Additionally, radar LOS velocities oscillated with amplitudes reaching ±500 m/s as the MSTIDs passed through the fields‐of‐view. In detrended TEC, these MSTIDs produced perturbations reaching ∼50 percent of background TEC magnitude. The MSTIDs were observed to propagate in the westward/south‐westward direction with a time period of ∼15 min. Projecting de‐trended GNSS TEC data along SuperDARN beams showed that enhancements in TEC were correlated with enhancements in SuperDARN SNR and positive LOS velocities. Finally, SuperDARN LOS velocities systematically switched polarities between the crests and the troughs of the MSTIDs, indicating the presence of polarization electric fields and an electrodynamic instability process during these MSTIDs. 
    more » « less
  4. Abstract Abrupt variations of auroral electrojets can induce geomagnetically induced currents, and the ability to model and forecast them is a pressing goal of space weather research. We report an auroral electrojet spike event that is extreme in magnitude, explosive in nature, and global in spatial extent that occurred on 24 April 2023. The event serves as a fundamental test of our understanding of the response of the geospace system to solar wind dynamics. Our results illustrate new and important characteristics that are drastically different from existing knowledge. Most important findings include (a) the event was only of ∼5‐min duration and was limited to a narrow (2°–3°) band of diffuse aurora; (b) the longitudinal span covered the entire nightside sector, possibly extending to the dayside; (c) the trigger seems to be a transient solar wind dynamic pressure pulse. In comparison, substorms usually last 1–2 hr and span almost the entire latitudinal width of the auroral oval. Magnetic perturbation events (MPEs) span hundreds km in radius. Both substorms and MPEs are mainly driven by disturbances in the magnetotail. A possible explanation is that the pressure pulse compresses the magnetosphere and enhances diffuse precipitation of electrons and protons from the inner plasma sheet, which elevates the ionospheric conductivity and intensifies the auroral electrojet. Therefore, the event exhibits a potentially new type of geomagnetic disturbance and highlights a solar wind driver that is enormously influential in driving extreme space weather events. 
    more » « less
  5. Abstract A new TEC‐based ionospheric data assimilation system (TIDAS) over the continental US and adjacent area (20°–60°N, 60°–130°W, and 100–600 km) has been developed through assimilating heterogeneous ionospheric data, including dense ground‐based Global Navigation Satellite System (GNSS) Total Electron Content (TEC) from 2,000+ receivers, Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation data, JASON satellite altimeter TEC, and Millstone Hill incoherent scatter radar measurements. A hybrid Ensemble‐Variational scheme is utilized to reconstruct the regional 3‐D electron density distribution: a more realistic and location‐dependent background error covariance matrix is calculated from an ensemble of corrected NeQuick outputs, and a three‐dimensional variational (3DVAR) method is adopted for measurement updates to obtain an optimal state estimation. The spatial‐temporal resolution of the reanalyzed 3‐D electron density product is as high as 1° × 1° in latitude and longitude, 20 km in altitude, and 5 min in universal time, which is sufficient to reproduce ionospheric fine structure and storm‐time disturbances. The accuracy and reliability of data assimilation results are validated using ionosonde and other measurements. TIDAS reanalyzed electron density is able to successfully reconstruct the 3‐D morphology and dynamic evolution of the storm‐enhanced density (SED) plume observed during the St. Patrick's day geomagnetic storm on 17 March 2013 with high fidelity. Using TIDAS, we found that the 3‐D SED plume manifests as a ridge‐like high‐density channel that predominantly occurred between 300 and 500 km during 19:00–21:00 UT for this event, with the F2 region peak height being raised by 40–60 km and peak density enhancement of 30%–50%. 
    more » « less