skip to main content


Title: A Bayesian approach to integrating radiometric dating and varve measurements in intermittently indistinct sediment

Abstract. Annually laminated lake sediment can track paleoenvironmental change at high resolution where alternative archives are often not available. However,information about the chronology is often affected by indistinct and intermittent laminations. Traditional chronology building struggles with thesekinds of laminations, typically failing to adequately estimate uncertainty or discarding the information recorded in the laminations entirely,despite their potential to improve chronologies. We present an approach that overcomes the challenge of indistinct or intermediate laminations andother obstacles by using a quantitative lamination quality index combined with a multi-core, multi-observer Bayesian lamination sedimentation modelthat quantifies realistic under- and over-counting uncertainties while integrating information from radiometric measurements (210Pb,137Cs, and 14C) into the chronology. We demonstrate this approach on sediment of indistinct and intermittently laminatedsequences from alpine Columbine Lake, Colorado. The integrated model indicates 3137 (95 % highest probability density range: 2753–3375) varveyears with a cumulative posterior distribution of counting uncertainties of −13 % to +7 %, indicative of systematic observerunder-counting. Our novel approach provides a realistic constraint on sedimentation rates and quantifies uncertainty in the varve chronology byquantifying over- and under-counting uncertainties related to observer bias as well as the quality and variability of the sediment appearance. The approachpermits the construction of a chronology and sedimentation rates for sites with intermittent or indistinct laminations, which are likely moreprevalent than sequences with distinct laminations, especially when considering non-lacustrine sequences, and thus expands the possibilities ofreconstructing past environmental change with high resolution.

 
more » « less
Award ID(s):
1919506
NSF-PAR ID:
10474738
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Geochronology
Volume:
4
Issue:
1
ISSN:
2628-3719
Page Range / eLocation ID:
409 to 433
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Annual resolution sediment layers, known as varves, can provide continuous and high-resolution chronologies of sedimentary sequences. In addition, varve counting is not burdened with the high laboratory costs of geochronological analyses. Despite a more than 100-year history of use, many existing varve counting techniques are time consuming and difficult to reproduce. We present countMYvarves, a varve counting toolbox which uses sliding-window autocorrelation to count the number of repeated patterns in core scans or outcrop photos. The toolbox is used to build an annually-resolved record of sedimentation rates, which are depth-integrated to provide ages. We validate the model with repeated manual counts of a high sedimentation rate lake with biogenic varves (Herd Lake, USA) and a low sedimentation rate glacial lake (Lago Argentino, Argentina). In both cases, countMYvarves is consistent with manual counts and provides additional sedimentation rate data. The toolbox performs multiple simultaneous varve counts, enabling uncertainty to be quantified and propagated into the resulting age-depth model. The toolbox also includes modules to automatically exclude non-varved portions of sediment and interpolate over missing or disrupted sediment. CountMYvarves is open source, runs through a graphical user interface, and is available online for download for use on Windows, macOS or Linux at https://doi.org/10.5281/zenodo.4031811 . 
    more » « less
  2. Abstract

    Understanding sedimentation patterns in small coastal watersheds due to landscape perturbations is critical for connecting hillslope and fluvial processes, in addition to managing aquatic habitats for anadromous fish and other aquatic species in the Oregon Coast Range (OCR). Changes in sedimentation patterns spanning the last 250 years are preserved in two landslide‐dammed lakes in small watersheds (< 10 km2) underlain by the Tyee Formation in the central OCR. Dendrochronology of drowned Douglas‐fir stumps in both lakes provided precise timing of the damming and formation of the lakes, with Klickitat Lake forming in winterad1751/52 and Wasson Lake in winterad1819/20. Perturbations from wildfires, logging and road development, and previously underappreciated snow events affect sedimentation rates in the lakes to different degrees, and are identified in the sediment record using cesium‐137 (137Cs), high‐resolution charcoal stratigraphy, local fire records, and aerial photography. Each lake has variable sedimentation accumulation rates (0.05–4.4 cm yr−1) and mass accumulation rates (0.02–1.42 g cm−2yr−1). Sedimentation rates remained low from the landslide‐damming events until the mid‐19th century, when they increased following stand‐replacing wildfires. Aside from a sediment remobilization triggered by human modification of the landslide dam at Klickitat Lake around 1960, the largest peaks in mass accumulation rates in the mid‐20th century at both lakes in the early 1950s precede major road construction and logging activity in the watersheds. Subsequent sedimentation rates are lower, but variable, and possible effects of logging and road development might be exacerbated by abnormal precipitation and heavy snow events. A comparison of previous studies of landslide‐dammed lakes in larger watershed of the OCR are consistent with our findings of increased sedimentation in the mid‐20th century, as well as higher sedimentation rates in the debris‐flow dominated southern Tyee Formation than in the lower‐relief northern Tyee Formation.

     
    more » « less
  3. Abstract

    Suspended sediment delivery and deposition in proglacial lakes is generally sensitive to a wide range of hydrometeorologic and geomorphic controls. High discharge conditions are of particular importance in many glaciolacustrine records, with individual floods potentially recorded as distinctive turbidites. We used an extensive network of surface sediment cores and hydroclimatic monitoring data to analyse recent flood turbidites and associated sediment transfer controls over instrumental periods at Eklutna Lake, western Chugach Mountains, Alaska. Close to a decade of fluvial data from primary catchment tributaries show a dominating influence of discharge on sediment delivery, with various interconnections with other related hydroclimatic controls. Multivariate fluvial models highlight and help quantify some complexities in sediment transfer, including intra‐annual variations, meteorological controls, and the influence of subcatchment glacierization. Sediments deposited in Eklutna Lake during the last half century are discontinuously varved and contain multiple distinctive turbidites. Over a 30‐year period of stratigraphic calibration, we correlate the four thickest flood turbidites (1989, 1995, 2006, and 2012) to specific regional storms. The studied turbidites correlate with late‐summer and early‐autumn rainstorms with a magnitude of relatively instantaneous sedimentation 3–15 times greater than annual background accumulation. Our network of sediment core data captured the broad extent and sediment variability among the study turbidites and background sediment yield. Within‐lake spatial modelling of deposition quantifies variable rates of downlake thinning and sediment focusing effects, and highlights especially large differences between the thickest flood turbidites and background sedimentation. This we primarily relate to strongly contrasting dispersion processes controlled by inflow current strength and turbidity. Sediment delivery is of interest for this catchment because of reservoir and water supply operations. Furthermore, although smaller floods may not be consistently represented, the lake likely contains a valuable proxy record of regional flooding proximal to major population centers of south‐central Alaska including Anchorage.

     
    more » « less
  4. Abstract

    Lake‐based studies can provide seasonal‐ to millennial‐scale records of sediment yield to improve our understanding of catchment‐scale sediment transfer and complement shorter fluvial‐based sediment transport studies. In this study, sediment accumulation rates at 40 coring locations in Lake Peters, Brooks Range, Alaska, over ca. 42 years, calculated using fallout radionuclides and sediment density patterns, were spatially modelled based on distance from the primary inflow and lake water depth. We estimated mean interdecadal specific sediment yield (Mg km−2 year−1) using the spatially modelled sediment accumulation rates and compared that result to fluvial‐based sediment delivery for 2015–2016 open‐channel seasons, as well as to yields reported for other Arctic catchments. Using the lake‐based method, mean yield to Lake Peters between ca. 1973 and 2015 was 52 ± 12 Mg km−2 year−1, which is comparable with fluvial‐based modelling results of 33 (20–60) Mg km−2 year−1in 2015 and 79 (50–140) Mg km−2 year−1in 2016 (95% confidence intervals), respectively. Although 2016 was a year of above average sedimentation, the last extreme depositional event probably occurred between ca. 1970 and 1976 when a basal layer of fine sand was deposited in a broadly distributed, relatively thick and coarse bed, which we used for lake‐wide correlation. The dual lacustrine–fluvial method approach permits study of within‐lake and catchment‐scale processes. Within Lake Peters, sedimentation patterns show decreasing fluxes down‐lake, sediment bypassing near the primary inflow, the influence of secondary inflows and littoral redistribution, and a focusing effect in the deep proximal basin. At the watershed scale, sediment yield is largely driven by intense summer rainfall and strong seasonal hydroclimatic variability. This research informs paleo‐environmental reconstruction and environmental system modelling in Arctic lake catchments.

     
    more » « less
  5. Abstract. Local similarity between the Mandelbrot set and quadratic Julia sets manifests itself in a variety of ways. We discuss a combinatorial one, in the language of geodesic laminations. More precisely, we compare quadratic invariant laminations representing Julia sets with the so-called Quadratic Minor Lamination (QML) representing a locally connected model of the Mandelbrot set. Similarly to the construction of an invariant lamination by pullbacks of certain leaves, we describe how QML can be generated by properly understood pullbacks of certain minors. In particular, we show that the minors of all non-renormalizable quadratic laminations can be obtained by taking limits of “pullbacks” of minors from the main cardioid 
    more » « less