skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The impact of urban irrigation on the temperature-carbon feedback in U.S. cities
Urban areas experience numerous environmental challenges, among which the anthropogenic emissions of heat and carbon are two major contributors, the former is responsible for the notorious urban heat effect, the latter longterm climate changes. Moreover, the exchange of heat and carbon dioxide are closely interlinked in the built environment, and can form positive feedback loops that accelerate the degradation of urban environmental quality. Among a handful countermeasures for heat and carbon mitigation, urban irrigation is believed to be effective in cooling, yet the understanding of its impact on the co-evolution of heat and carbon emission remains obscure. In this study, we conducted multiphysics urban climate modeling for all urban areas in the contiguous United States, and evaluated the irrigation-induced cooling and carbon mitigation. Furthermore, we assessed the impact of urban irrigation on the potential heat-carbon feedback loop, with their strength of coupling quantified by an advanced causal inference method using the convergent cross mapping algorithms. It is found that the impact of urban irrigation varies vastly in geographically different cities, with its local and non-local effect unraveling distinct pathways of heat-carbon feedback mechanism.  more » « less
Award ID(s):
2028868
PAR ID:
10476825
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Environmental Management
Volume:
344
Issue:
C
ISSN:
0301-4797
Page Range / eLocation ID:
118452
Subject(s) / Keyword(s):
Causality Contiguous United States Convergent cross mapping Heat-carbon feedback Irrigation Urban microclimate
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global climate changes, especially the rise of global mean temperature due to the increased carbon dioxide (CO2) concentration, can, in turn, result in higher anthropogenic and biogenic greenhouse gas emissions. This potentially leads to a positive loop of climate–carbon feedback in the Earth’s climate system, which calls for sustainable environmental strategies that can mitigate both heat and carbon emissions, such as urban greening. In this study, we investigate the impact of urban irrigation over green spaces on ambient temperatures and CO2exchange across major cities in the contiguous United States. Our modeling results indicate that the carbon release from urban ecosystem respiration is reduced by evaporative cooling in humid climate, but promoted in arid/semi-arid regions due to increased soil moisture. The irrigation-induced environmental co-benefit in heat and carbon mitigation is, in general, positively correlated with urban greening fraction and has the potential to help counteract climate–carbon feedback in the built environment. 
    more » « less
  2. Abstract Carbon dioxide (CO2) quantification is critical for assessing city‐level carbon emissions and sustainable urban development. While urban vegetation has the potential to provide environmental benefits, such as heat and carbon mitigation, the CO2exchange from biogenic sectors and its impact from the environmental perturbations are often overlooked. It is also challenging to simulate the plant functions in the complex urban terrain. This study presents a processed‐based modeling approach to assess the biogenic carbon fluxes from the vegetated areas over the Chicago Metropolitan Area (CMA) using the Weather Research and Forecast—Urban Biogenic Carbon exchange model. We investigate the change of CO2sink power in CMA under heatwaves and irrigation. The results indicate that the vegetation plays a significant role in the city's carbon portfolio and the landscaping management has the potential to reduce carbon emissions significantly. Furthermore, based on the competing mechanisms in the biogenic carbon balance identified in this study, we develop a novel Environmental Benefit Score metrics framework to identify the vulnerability and mitigation measures associated with nature‐based solutions (NbS) within CMA. By using the generalized portable framework and our science‐policy confluence analysis presented in this study, global cities can maximize the effectiveness of NbS and accelerate carbon neutrality. 
    more » « less
  3. Abstract Irrigation plays a crucial role in agricultural production across the U.S. Great Plains. Meanwhile, it is a key driver of local and regional climate due to its influence on energy and water exchange between land surface and atmosphere. Despite the irrigation-induced evaporative cooling on temperature alone, how irrigation affects summer heat stress – a combination of temperature and humidity can become a concern to public health concern – is not well understood. This study examines the potential impacts of irrigation practices on summer temperature and heat extremes in the Great Plains using a set of sensitivity experiments conducted with the Weather Research & Forecasting (WRF) model for 10 growing seasons. Results show that intensive irrigation lowers the atmospheric temperature, but the increased humidity from enhanced evapotranspiration, especially during the extreme hot and dry summers, can possibly elevate the risks of heat stress in the heavily irrigated area and its surroundings. The response of humid heat extremes to irrigation depends on the heat metrics used in the assessment. For variables like wet-bulb temperature, wet-bulb globe temperature, and equivalent temperature, irrigation leads to significantly intensified humid heat extremes by up to 5°C and increased heatwave frequency by 3 events year-1. In contrast, metrics like the heat index and environmental stress index suggest that irrigation mitigates heat intensity by decreasing the temperature metrics by up to 1°C. Given the importance of irrigation in Great Plains agriculture in a changing climate, these uncertainties underscore the urgent need to connect heat metrics with health outcomes to better address heat mitigation in rural communities. 
    more » « less
  4. Abstract High nighttime urban air temperatures increase health risks and economic vulnerability of people globally. While recent studies have highlighted nighttime heat mitigation effects of urban vegetation, the magnitude and variability of vegetation-derived urban nighttime cooling differs greatly among cities. We hypothesize that urban vegetation-derived nighttime air cooling is driven by vegetation density whose effect is regulated by aridity through increasing transpiration. We test this hypothesis by deploying microclimate sensors across eight United States cities and investigating relationships of nighttime air temperature and urban vegetation throughout a summer season. Urban vegetation decreased nighttime air temperature in all cities. Vegetation cooling magnitudes increased as a function of aridity, resulting in the lowest cooling magnitude of 1.4 °C in the most humid city, Miami, FL, and 5.6 °C in the most arid city, Las Vegas, NV. Consistent with the differences among cities, the cooling effect increased during heat waves in all cities. For cities that experience a summer monsoon, Phoenix and Tucson, AZ, the cooling magnitude was larger during the more arid pre-monsoon season than during the more humid monsoon period. Our results place the large differences among previous measurements of vegetation nighttime urban cooling into a coherent physiological framework dependent on plant transpiration. This work informs urban heat risk planning by providing a framework for using urban vegetation as an environmental justice tool and can help identify where and when urban vegetation has the largest effect on mitigating nighttime temperatures. 
    more » « less
  5. Widera, Barbara; Rudnicka-Bogusz, Marta; Onyszkiewicz, Jakub; Woźniczka, Agata (Ed.)
    Urban areas often experience higher air temperatures than their surrounding rural counterparts, a phenomenon known as the urban heat island (UHI) effect. This significant human-induced alteration of urban microclimates has notable consequences, especially on urban energy consumption and resulting economic implications. This study presents an in-depth analysis of the UHI effect on urban building energy consumption in a US Midwest neighbourhood. Utilizing a three-phase methodology, the research first simulated UHI intensities with current and future Typical Meteorological Year (TMY) data, integrated with the Local Climate Zone (LCZ) classification system and the Urban Weather Generator (UWG) model. The second phase employed the urban modelling interface (umi) for building energy simulation, capturing the UHI impact on both residential and commercial buildings. The third phase demonstrates that UHI effects lead to reduced heating demand but increased cooling requirements in the future, with residential areas being more affected. The study's findings reveal critical challenges for urban planners and policymakers, emphasizing the need for sustainable designs to address fluctuating heating and cooling demands in changing climates. 
    more » « less