Here, we study the evolution of specialization using realistic computer simulations of bacteria that secrete two public goods in a dynamic fluid. Through this first‐principles approach, we find physical factors such as diffusion, flow patterns and decay rates are as influential as fitness economics in governing the evolution of community structure, to the extent that when mechanical factors are taken into account, (a) generalist communities can resist becoming specialists despite the invasion fitness of specialization; (b) generalist and specialists can both resist cheaters despite the invasion fitness of free‐riding; and (c) multiple community structures can coexist despite the opposing force of competitive exclusion. Our results emphasize the role of spatial assortment and physical forces on niche partitioning and the evolution of diverse community structures.
- Award ID(s):
- 2218849
- PAR ID:
- 10478022
- Publisher / Repository:
- Physical Review E
- Date Published:
- Journal Name:
- Physical Review E
- Volume:
- 108
- Issue:
- 3
- ISSN:
- 2470-0045
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Most herbivorous insects are diet specialists in spite of the apparent advantages of being a generalist. This conundrum might be explained by fitness trade‐offs on alternative host plants, yet the evidence of such trade‐offs has been elusive. Another hypothesis is that specialization is nonadaptive, evolving through neutral population‐genetic processes and within the bounds of historical constraints. Here, we report on a striking lack of evidence for the adaptiveness of specificity in tropical canopy communities of armored scale insects. We find evidence of pervasive diet specialization, and find that host use is phylogenetically conservative, but also find that more‐specialized species occur on fewer of their potential hosts than do less‐specialized species, and are no more abundant where they do occur. Of course local communities might not reflect regional diversity patterns. But based on our samples, comprising hundreds of species of hosts and armored scale insects at two widely separated sites, more‐specialized species do not appear to outperform more generalist species.
-
Abstract Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear.
Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested.
We used repeated stable isotope measurements (δ13C, δ15N;
N = 3,509) and 6 years of capture–mark–recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies.Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists.
These results indicate that competition is the proximate driver of individual foraging strategies, and that diet‐mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change.
-
Abstract Global loss of biodiversity has placed new urgency on the need to understand factors regulating species response to rapid environmental change. While specialists are often less resilient to rapid environmental change than generalists, species‐level analyses may obscure the extent of specialization when locally adapted populations vary in climate tolerances. Until recently, quantification of the degree of climate specialization in migratory birds below the species level was hindered by a lack of genomic and tracking information, but recent technological advances have helped to overcome these barriers. Here we take a genome‐wide genetic approach to mapping population‐specific migratory routes and quantifying niche breadth within genetically distinct populations of a migratory bird, the willow flycatcher (
Empidonax traillii ), which exhibits variation in the severity of population declines across its breeding range. While our sample size is restricted to the number of genetically distinct populations within the species, our results support the idea that locally adapted populations of the willow flycatcher with narrow climatic niches across seasons are already federally listed as endangered or in steep decline, while populations with broader climatic niches have remained stable in recent decades. Overall, this work highlights the value of quantifying niche breadth within genetically distinct groups across time and space when attempting to understand the factors that facilitate or constrain the response of locally adapted populations to rapid environmental change. -
null (Ed.)Predator specialization has often been considered an evolutionary “dead end” due to the constraints associated with the evolution of morphological and functional optimizations throughout the organism. However, in some predators, these changes are localized in separate structures dedicated to prey capture. One of the most extreme cases of this modularity can be observed in siphonophores, a clade of pelagic colonial cnidarians that use tentilla (tentacle side branches armed with nematocysts) exclusively for prey capture. Here we study how siphonophore specialists and generalists evolve, and what morphological changes are associated with these transitions. To answer these questions, we: a) Measured 29 morphological characters of tentacles from 45 siphonophore species, b) mapped these data to a phylogenetic tree, and c) analyzed the evolutionary associations between morphological characters and prey-type data from the literature. Instead of a dead end, we found that siphonophore specialists can evolve into generalists, and that specialists on one prey type have directly evolved into specialists on other prey types. Our results show that siphonophore tentillum morphology has strong evolutionary associations with prey type, and suggest that shifts between prey types are linked to shifts in the morphology, mode of evolution, and evolutionary correlations of tentilla and their nematocysts. The evolutionary history of siphonophore specialization helps build a broader perspective on predatory niche diversification via morphological innovation and evolution. These findings contribute to understanding how specialization and morphological evolution have shaped present-day food webs.more » « less