skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Post Take-Over Performance Varies in Drivers of Automated and Connected Vehicle Technology in Near-Miss Scenarios
ObjectiveThis study examined the impact of monitoring instructions when using an automated driving system (ADS) and road obstructions on post take-over performance in near-miss scenarios. BackgroundPast research indicates partial ADS reduces the driver’s situation awareness and degrades post take-over performance. Connected vehicle technology may alert drivers to impending hazards in time to safely avoid near-miss events. MethodForty-eight licensed drivers using ADS were randomly assigned to either the active driving or passive driving condition. Participants navigated eight scenarios with or without a visual obstruction in a distributed driving simulator. The experimenter drove the other simulated vehicle to manually cause near-miss events. Participants’ mean longitudinal velocity, standard deviation of longitudinal velocity, and mean longitudinal acceleration were measured. ResultsParticipants in passive ADS group showed greater, and more variable, deceleration rates than those in the active ADS group. Despite a reliable audiovisual warning, participants failed to slow down in the red-light running scenario when the conflict vehicle was occluded. Participant’s trust in the automated driving system did not vary between the beginning and end of the experiment. ConclusionDrivers interacting with ADS in a passive manner may continue to show increased and more variable deceleration rates in near-miss scenarios even with reliable connected vehicle technology. Future research may focus on interactive effects of automated and connected driving technologies on drivers’ ability to anticipate and safely navigate near-miss scenarios. ApplicationDesigners of automated and connected vehicle technologies may consider different timing and types of cues to inform the drivers of imminent hazard in high-risk scenarios for near-miss events.  more » « less
Award ID(s):
1949760
PAR ID:
10478177
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
Volume:
66
Issue:
11
ISSN:
0018-7208
Format(s):
Medium: X Size: p. 2503-2517
Size(s):
p. 2503-2517
Sponsoring Org:
National Science Foundation
More Like this
  1. Trust is crucial for ensuring the safety, security, and widespread adoption of automated vehicles (AVs), and if trust is lacking, drivers and the general public may hesitate to embrace this technology. This research seeks to investigate contextualized trust profiles in order to create personalized experiences for drivers in AVs with varying levels of reliability. A driving simulator experiment involving 70 participants revealed three distinct contextualized trust profiles (i.e., confident copilots, myopic pragmatists, and reluctant automators) identified through K-means clustering, and analyzed in relation to drivers' dynamic trust, dispositional trust, initial learned trust, personality traits, and emotions. The experiment encompassed eight scenarios where participants were requested to take over control from the AV in three conditions: a control condition, a false alarm condition, and a miss condition. To validate the models, a multinomial logistic regression model was constructed using the shapley additive explanations explainer to determine the most influential features in predicting contextualized trust profiles, achieving an F1-score of 0.90 and an accuracy of 0.89. In addition, an examination of how individual factors impact contextualized trust profiles provided valuable insights into trust dynamics from a user-centric perspective. The outcomes of this research hold significant implications for the development of personalized in-vehicle trust monitoring and calibration systems to modulate drivers' trust levels, thereby enhancing safety and user experience in automated driving. 
    more » « less
  2. Trust calibration poses a significant challenge in the interaction between drivers and automated vehicles (AVs) in the context of human-automation collaboration. To effectively calibrate trust, it becomes crucial to accurately measure drivers’ trust levels in real time, allowing for timely interventions or adjustments in the automated driving. One viable approach involves employing machine learning models and physiological measures to model the dynamic changes in trust. This study introduces a technique that leverages machine learning models to predict drivers’ real-time dynamic trust in conditional AVs using physiological measurements. We conducted the study in a driving simulator where participants were requested to take over control from automated driving in three conditions that included a control condition, a false alarm condition, and a miss condition. Each condition had eight takeover requests (TORs) in different scenarios. Drivers’ physiological measures were recorded during the experiment, including galvanic skin response (GSR), heart rate (HR) indices, and eye-tracking metrics. Using five machine learning models, we found that eXtreme Gradient Boosting (XGBoost) performed the best and was able to predict drivers’ trust in real time with an f1-score of 89.1% compared to a baseline model of K -nearest neighbor classifier of 84.5%. Our findings provide good implications on how to design an in-vehicle trust monitoring system to calibrate drivers’ trust to facilitate interaction between the driver and the AV in real time. 
    more » « less
  3. null (Ed.)
    We explore the transfer of control from an automated vehicle to the driver. Based on data from N=19 participants who participated in a driving simulator experiment, we find evidence that the transfer of control often does not take place in one step. In other words, when the automated system requests the transfer of control back to the driver, the driver often does not simply stop the non-driving task. Rather, the transfer unfolds as a process of interleaving the non-driving and driving tasks. We also find that the process is moderated by the length of time available for the transfer of con- trol: interleaving is more likely when more time is available. Our interface designs for automated vehicles must take these results into account so as to allow drivers to safely take back control from automation. 
    more » « less
  4. ObjectiveThis study explores subjective and objective driving style similarity to identify how similarity can be used to develop driver-compatible vehicle automation. BackgroundSimilarity in the ways that interaction partners perform tasks can be measured subjectively, through questionnaires, or objectively by characterizing each agent’s actions. Although subjective measures have advantages in prediction, objective measures are more useful when operationalizing interventions based on these measures. Showing how objective and subjective similarity are related is therefore prudent for aligning future machine performance with human preferences. MethodsA driving simulator study was conducted with stop-and-go scenarios. Participants experienced conservative, moderate, and aggressive automated driving styles and rated the similarity between their own driving style and that of the automation. Objective similarity between the manual and automated driving speed profiles was calculated using three distance measures: dynamic time warping, Euclidean distance, and time alignment measure. Linear mixed effects models were used to examine how different components of the stopping profile and the three objective similarity measures predicted subjective similarity. ResultsObjective similarity using Euclidean distance best predicted subjective similarity. However, this was only observed for participants’ approach to the intersection and not their departure. ConclusionDeveloping driving styles that drivers perceive to be similar to their own is an important step toward driver-compatible automation. In determining what constitutes similarity, it is important to (a) use measures that reflect the driver’s perception of similarity, and (b) understand what elements of the driving style govern subjective similarity. 
    more » « less
  5. This paper proposes a reinforcement learning-based framework for mandatory lane changing of automated vehicles in a non-cooperative environment. The objective is to create a reinforcement learning (RL) agent that is able to perform lane-changing maneuvers successfully and efficiently and with minimal impact on traffic flow in the target lane. For this purpose, this study utilizes the double deep Q-learning algorithm structure, which takes relevant traffic states as input and outputs the optimal actions (policy) for the automated vehicle. We put forward a realistic approach for dealing with this problem where, for instance, actions selected by the automated vehicle include steering angles and acceleration/deceleration values. We show that the RL agent is able to learn optimal policies for the different scenarios it encounters and performs the lane-changing task safely and efficiently. This work illustrates the potential of RL as a flexible framework for developing superior and more comprehensive lane-changing models that take into consideration multiple aspects of the road environment and seek to improve traffic flow as a whole. 
    more » « less