Optimization of pain assessment and treatment is an active area of research in healthcare. The purpose of this research is to create an objective pain intensity estimation system based on multimodal sensing signals through experimental studies. Twenty eight healthy subjects were recruited at Northeastern University. Nine physiological modalities were utilized in this research, namely facial expressions (FE), electroencephalography (EEG), eye movement (EM), skin conductance (SC), and blood volume pulse (BVP), electromyography (EMG), respiration rate (RR), skin temperature (ST), blood pressure (BP). Statistical analysis and machine learning algorithms were deployed to analyze the physiological data. FE, EEG, SC, BVP, and BP proved to be able to detect different pain states from healthy subjects. Multi-modalities proved to be promising in detecting different levels of painful states. A decision-level multi-modal fusion also proved to be efficient and accurate in classifying painful states.
more »
« less
Objective Pain Measurement based on Physiological Signals
In an attempt to understand human physiological signals when an individual is subjected to pain, we set up a tonic pain experiment in a laboratory setting. The subjects’ physiological signals were recorded, timestamped, and compared to an initial 30 second baseline measurement. Subjects were also asked to verbally state their level of pain based on a visual analog scale in order to compare reported pain levels with physiological signals. The physiological signals measured were: Electroencephalography (EEG), Pupillary Unrest Under Ambient Light (PUAL), Skin Conductance (SC), Electromyography (EMG), Respiration Rate (RR), Blood Volume Pulse (BVP), Skin Temperature (ST), Blood Pressure (BP), and Facial Expression (FE). ANOVA and frequency domain analyses were conducted on the data in order to determine whether there was a significant difference between the ‘pain’ and ‘no pain’ (baseline) states of an individual. Based on our results, skin conductance, PUAL, facial expression, and EEG signals were theorized to be good signals for the classification of tonic pain, or any pain applied directly to an individual.
more »
« less
- Award ID(s):
- 1838621
- PAR ID:
- 10481398
- Publisher / Repository:
- Human Factors & Ergonomics Society
- Date Published:
- Journal Name:
- Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2327-8595
- Page Range / eLocation ID:
- 240 to 247
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Automatic pain intensity assessment from physiological signals has become an appealing approach, but it remains a largely unexplored research topic. Most studies have used machine learning approaches built on carefully designed features based on the domain knowledge available in the literature on the time series of physiological signals. However, a deep learning framework can automate the feature engineering step, enabling the model to directly deal with the raw input signals for real-time pain monitoring. We investigated a personalized Bidirectional Long short-term memory Recurrent Neural Networks (BiLSTM RNN), and an ensemble of BiLSTM RNN and Extreme Gradient Boosting Decision Trees (XGB) for four-category pain intensity classification. We recorded Electrodermal Activity (EDA) signals from 29 subjects during the cold pressor test. We decomposed EDA signals into tonic and phasic components and augmented them to original signals. The BiLSTM-XGB model outperformed the BiLSTM classification performance and achieved an average F1-score of 0.81 and an Area Under the Receiver Operating Characteristic curve (AUROC) of 0.93 over four pain states: no pain, low pain, medium pain, and high pain. We also explored a concatenation of the deep-learning feature representations and a set of fourteen knowledge-based features extracted from EDA signals. The XGB model trained on this fused feature set showed better performance than when it was trained on component feature sets individually. This study showed that deep learning could let us go beyond expert knowledge and benefit from the generated deep representations of physiological signals for pain assessment.more » « less
-
Introduction: Back pain is one of the most common causes of pain in the United States. Spinal cord stimulation (SCS) is an intervention for patients with chronic back pain (CBP). However, SCS decreases pain in only 58% of patients and relies on self-reported pain scores as outcome measures. An SCS trial is temporarily implanted for seven days and helps to determine if a permanent SCS is needed. Patients that have a >50% reduction in pain from the trial stimulator makes them eligible for permanent implantation. However, self-reported measures reveal little on how mechanisms in the brain are altered. Other measurements of pain intensity, onset, medication, disabilities, depression, and anxiety have been used with machine learning to predict outcomes with accuracies <70%. We aim to predict long-term SCS responders at 6-months using baseline resting EEG and machine learning. Materials and Methods: We obtained 10-minutes of resting electroencephalography (EEG) and pain questionnaires from nine participants with CBP at two time points: 1) pre-trial baseline. 2) Six months after SCS permanent implant surgery. Subjects were designated as high or moderate responders based on the amount of pain relief provided by the long-term (post six months) SCS, and pain scored on a scale of 0-10 with 0 being no pain and 10 intolerable. We used the resting EEG from baseline to predict long-term treatment outcome. Resting EEG data was fed through a pipeline for classification and to map dipole sources. EEG signals were preprocessed using the EEGLAB toolbox. Independent component analysis and dipole fitting were used to linearly unmix the signal and to map dipole sources from the brain. Spectral analysis was performed to obtain the frequency distribution of the signal. Each power band, delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz), as well as the entire spectrum (1-100 Hz), were used for classification. Furthermore, dipole sources were ranked based on classification feature weights to determine the significance of specific regions in the brain. We used support vector machines to predict pain outcomes. Results and Discussion: We found higher frequency powerbands provide overall classification performance of 88.89%. Differences in power are seen between moderate and high responders in both the frontal and parietal regions for theta, alpha, beta, and the entire spectrum (Fig.1). This can potentially be used to predict patient response to SCS. Conclusions: We found evidence of decreased power in theta, alpha, beta, and entire spectrum in the anterior regions of the parietal cortex and posterior regions of the frontal cortex between moderate and high responders, which can be used for predicting treatment outcomes in long-term pain relief from SCS. Long-term treatment outcome prediction using baseline EEG data has the potential to contribute to decision making in terms of permanent surgery, forgo trial periods, and improve clinical efficiency by beginning to understand the mechanism of action of SCS in the human brain.more » « less
-
Pain, especially chronic pain, is a complicated and subjective experience, threatening global healthcare as one of the most severe health problems. Traditionally, pain is assessed by Visual Analog Scale to indicate the pain intensity by the patient’s self-report, causing them to become biased by various psychosocial factors. In this study, we performed two distinct labeling methods to assess the pressure pain in Quantitative Sensory Testing and to differentiate healthy controls and chronic low back pain patients: time period labels and percentage timestamp labels. Physiological signals such as blood volume pulse and galvanic skin response were collected. The time period labeling method was to segment via fixed time windows. The percentage timestamp labeling method was to select the timestamp labels based on the percentage of the threshold or the tolerance time. Both methods demonstrate different advantages when visualizing the information of different pain states and different participant groups.more » « less
-
Chronic pain is prevalent and disproportionately impacts adults with a lower quality of life. Although subjective self-reporting is the “gold standard” for pain assessment, tools are needed to objectively monitor and account for inter-individual differences. This study introduced a novel framework to objectively classify pain intensity levels using physiological signals during Quantitative Sensory Testing sessions. Twenty-four participants participated in the study wearing physiological sensors (blood volume pulse (BVP), galvanic skin response (GSR), electromyography (EMG), respiration rate (RR), skin temperature (ST), and pupillometry). This study employed two analysis plans. Plan 1 utilized a grid search methodology with a 10-fold cross-validation framework to optimize time windows (1–5 s) and machine learning hyperparameters for pain classification tasks. The optimal time windows were identified as 3 s for the pressure session, 2 s for the pinprick session, and 1 s for the cuff session. Analysis Plan 2 implemented a leave-one-out design to evaluate the individual contribution of each sensor modality. By systematically excluding one sensor’s features at a time, the performance of these sensor sets was compared to the full model using Wilcoxon signed-rank tests. BVP emerged as a critical sensor, significantly influencing performance in both pinprick and cuff sessions. Conversely, GSR, RR, and pupillometry demonstrated stimulus-specific sensitivity, significantly contributing to the cuff session but with limited influence in other sessions. EMG and ST showed minimal impact across all sessions, suggesting they are non-critical and suitable for reducing sensor redundancy. These findings advance the design of sensor configurations for personalized pain management. Future research will focus on refining sensor integration and addressing stimulus-specific physiological responses.more » « less
An official website of the United States government

