skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Synergetic Ionic and Electronic Features of MAPbI3 Perovskite Films Revealed by Electrochemical Impedance Spectroscopy
Abstract Perovskites have emerged as a forerunner of electronics research due to their vast potential for optoelectronic applications. The numerous combinations of constituent ions and the potential for doping of perovskites lead to a high demand to track the underlying electronic properties. Solution‐based electrochemistry is particularly promising for detailed and facile assessment of perovskites. Here, electrochemical impedance spectroscopy (EIS) of methylammonium lead iodide (MAPbI3) thin films is performed and model them with an equivalent circuit that accounts for solvent, ionic, and thin film effects. A dielectric constant consistent with prior AC studies and a diffusion constant harmonious with cation motion in MAPbI3are extracted. An electrical double layer thickness in the perovskite film of 54 nm is obtained, consistent with lithium doping in perovskite films. Comparing the EIS and equivalent circuit model of perovskite films to control ITO‐only data enabled the assignment of the ions at each interface. This comparison implied a double layer of primarily lithium ions inside the perovskite film at the solution interface with significant recombination of ions on the solution side of the interface. This demonstrates EIS as a powerful tool for studying the fundamental charge accumulation and transport processes in perovskite thin films.  more » « less
Award ID(s):
1906505
PAR ID:
10484005
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Optical Materials
ISSN:
2195-1071
Page Range / eLocation ID:
2301677
Subject(s) / Keyword(s):
cyclic voltammetry methylammonium lead iodide electrochemistry degradation hydrofluoroether
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photovoltaic cells based on metal‐halide perovskites have exceeded the performance of other thin film technologies and rival the performance of devices based on archetypical silicon. Attractively, the perovskite active layer can be processed via a variety of solution‐ and vapor‐based methods. Herein, emphasis is on the use of vapor transport codeposition (VTD) to process efficient n–i–p photovoltaic cells based on methylammonium lead iodide (MAPbI3). VTD utilizes a hot‐walled reactor operated under moderate vacuum in the range of 0.5–10 Torr. The organic and metal‐halide precursors are heated with the resulting vapor transported by a N2carrier gas to a cooled substrate where they condense and react to form a perovskite film. The efficiency of photovoltaic devices based on VTD‐processed MAPbI3is found to be highest in films with excess lead iodide content, with champion devices realizing exceeding 12%. 
    more » « less
  2. Using a methylammonium selective membrane in conjunction with electrochemical impedance spectroscopy, we measured ion migration in methylammonium lead triiodide (MAPbI 3 ) with a millisecond (ms) time constant under illumination. These values were consistent with the reported values of ionic conduction in thin-film perovskite solar cells. We monitored an electrochemical impedance response arising from ionic conductivity through MAPbI 3 and a methylammonium selective layer. We could fit this complex impedance response to an intuitive circuit model, which revealed an ionic species moving on a ms time scale. Electrospray ionization mass spectrometry (ESI-MS) revealed direct chemical evidence of methylammonium diffusion into the ion-selective layer. We found no experimental evidence indicating the mobility of lead ions or protons, suggesting that the mobile species observed under illumination is likely methylammonium. 
    more » « less
  3. This paper describes analysis of dropcast nanocrystalline and electrochemically deposited films of NiO and α-Fe 2 O 3 as model metal oxide semiconductors immersed in redox-inactive organic electrolyte solutions using electrochemical impedance spectroscopy (EIS). Although the data reported here fit a circuit commonly used to model EIS data of metal oxide electrodes, which comprises an RC circuit nested inside a second RC circuit that is in series with a resistor, our interpretation of the physical meaning of these circuit elements differs from that applied to EIS measurements of metal oxide electrodes immersed in redox-active media. The data presented here are most consistent with an interpretation in which the nested RC circuit represents charge transfer between the metal oxide film and the underlying metal electrode, and the non-nested RC circuit represents the resistance and capacitance associated with formation of a charge-compensating double-layer at the exposed interface between the metal electrode and electrolyte solution. Applying this interpretation to analysis of EIS data collected for metal oxide films in organic media enables the impact of film morphology on electrochemical behavior to be distinguished from the effects of the intrinsic electronic structure of the metal oxide. This distinction is crucial to the evaluation of nanostructured metal oxide electrodes for electrochemical energy storage and electrocatalysis applications. 
    more » « less
  4. Abstract Halide perovskites are hailed as semiconductors of the 21stcentury. Chemical vapor deposition (CVD), a solvent‐free method, allows versatility in the growth of thin films of 3‐ and 2D organic–inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI3) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated. With 5 kV accelerating voltage, the dosage is varied between 50 and 50000 µC cm−2. An optimum dosage of 35 000 µC cm−2results in a significant blue shift and enhancement of the photoluminescence peak. Concomitantly, a strong increase in the photocurrent is observed. A similar electron beam treatment on chlorine incorporated MAPbI3, where chlorine is known to passivate defects, shows a blue shift in the photoluminescence without improving the photocurrent properties. Low electron beam dosage under cryogenic conditions is found to damage CVD grown 2D phenylethlyammoinum lead iodide films. Monte Carlo simulations reveal differences in electron beam interaction with 3‐ and 2D halide perovskite films. 
    more » « less
  5. Conjugated molecules have been typically utilized as either hole or electron extraction layers to boost the device performance of perovskite solar cells (PSCs), formed from three-dimensional (3D) perovskites, due to their high charge carrier mobility and electrical conductivity. However, the passivating role of conjugated molecules in creating two-dimensional (2D) perovskites has rarely been reported. In this study, we report novel conjugated aniline 3-phenyl-2-propen-1-amine (PPA) based 2D perovskites and further demonstrate efficient and stable PSCs containing a (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film (where MA is CH 3 NH 3 + ). The (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film possesses superior crystallinity and passivated trap states, resulting in enhanced charge transport and suppressed charge carrier recombination compared to those of a 3D MAPbI 3 thin film. As a result, PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film exhibit a power conversion efficiency (PCE) of 21.98%, which is approximately a 25% enhancement compared to that of the MAPbI 3 thin film. Moreover, un-encapsulated PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film retain 50% of their initial PCE after 1200 hours in an ambient atmosphere (25 °C, and 30 ± 10 humidity), whereas PSCs with the 3D MAPbI 3 thin film show significant degradation after 100 hours and a degradation of more than 50% of their original PCE after 500 hours. These results demonstrate that the incorporation of conjugated molecules as organic spacer cations to create 2D perovskites on top of 3D perovskites is an effective way to approach high-performance PSCs. 
    more » « less