skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Interplay of Incentives, Electricity Price and Demand on Transport Decarbonization: The Case of Electric Vehicles in the U.S.
While extant research explores the impact of Electric Vehicle (EV) incentives on EV market shares, less is known about how such policies and other socioeconomic factors interact that ultimately affect the goal of transportation emission reductions. The study summarized herein employed a sample of 510 state-year CO 2 emissions data sets in the transportation sector spanning a decade (2010-2019) in a multiple linear regression model. Going beyond earlier studies, we find that, while a higher number of EV incentives would significantly contribute to transportation emission reductions, this effect could be dampened by population growth. In addition, we find that, while higher electricity prices may weaken the effectiveness of EV incentives, a high count of EV incentives is more effective in reducing CO 2 emissions than a low count of EV incentives when the electricity price is low. This finding implies that having multiple EV incentives can be effective in reducing transportation carbon emissions even in the face of rising prices of electricity. The study also examines the effectiveness of promoting the density of charging stations and alternative fuel incentives in advancing carbon emission reductions.  more » « less
Award ID(s):
1847077
PAR ID:
10492342
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Engineering Management Review
ISSN:
0360-8581
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship. 
    more » « less
  2. Abstract Combusting fossil fuels to produce electricity is the single largest contributor to sector-level, anthropogenic carbon pollution. Because sector-wide policies are often too unwieldy to implement, however, some researchers have recommended reducing electricity-based CO2emissions by targeting the most extreme emitters of each nation’s electricity industry. Here, we use a unique international data source to measure national disproportionalities in power plant CO2emissions and estimate the fraction of each country’s electricity-based CO2emissions that would be reduced if its most profligate polluters lowered their emission intensities, switched to gas fuels, and incorporated carbon capture and storage systems. We find that countries’ disproportionalities vary greatly and have mostly grown over time. We also find that 17%–49% of the world’s CO2emissions from electricity generation could be eliminated depending on the intensity standards, fuels, or carbon capture technologies adopted by hyper-emitting plants. This suggests that policies aimed at improving the environmental performance of ‘super polluters’ are effective strategies for transitioning to decarbonized energy systems. 
    more » « less
  3. Reducing greenhouse gas emissions is an international impetus to transition from vehicles with internal combustion engines (ICE) to electric vehicles (EV). While this transition is happening rapidly in some regions of the world that are mainly urbanized, other predominantly rural and less developed regions are slower to adopt this technology. Rural Alaska serves as an example with its not-road-connected communities, high cost of electricity, extreme environmental conditions, and isolated power grids often powered by diesel. This study used co-production and mixed methods to identify barriers and perceived benefits towards EV adoption and explore EV adoption rates across the Arctic. We conducted community workshops in Bethel, Galena, and Kotzebue, Alaska, and 25 interviews with businesses and local governments. The top five impediments to EV adoption are the inability to maintain vehicles locally, cold weather performance, higher purchase prices compared to ICE vehicles, and the cost of electricity. The successful adoption of EVs in isolated microgrid communities in the Arctic requires investments in appropriate financial incentives, especially for low-income households, expansion of renewable power generation, and climate and culture-relevant proof-of-concept vehicles. Residents acknowledged that EVs generally operate much cleaner than vehicles with ICE, can have lower fuel and maintenance costs, and cause less air and noise pollution. We propose a framework to develop policies to facilitate the adoption of EVs in rural areas. Policy implications for overcoming the challenges related to the transition to EVs in remote rural parts of the globe are discussed. 
    more » « less
  4. Abstract Electric vehicles (EVs) constitute just a fraction of the current U.S. transportation fleet; however, EV market share is surging. EV adoption reduces on-road transportation greenhouse gas emissions by decoupling transportation services from petroleum, but impacts on air quality and public health depend on the nature and location of vehicle usage and electricity generation. Here, we use a regulatory-grade chemical transport model and a vehicle-to-electricity generation unit electricity assignment algorithm to characterize neighborhood-scale (∼1 km) air quality and public health benefits and tradeoffs associated with a multi-modal EV transition. We focus on a Chicago-centric regional domain wherein 30% of the on-road transportation fleet is instantaneously electrified and changes in on-road, refueling, and power plant emissions are considered. We find decreases in annual population-weighted domain mean NO2(−11.83%) and PM2.5(−2.46%) with concentration reductions of up to −5.1 ppb and −0.98µg m−3in urban cores. Conversely, annual population-weighted domain mean maximum daily 8 h average ozone (MDA8O3) concentrations increase +0.64%, with notable intra-urban changes of up to +2.3 ppb. Despite mixed pollutant concentration outcomes, we find overall positive public health outcomes, largely driven by NO2concentration reductions that result in outsized mortality rate reductions for people of color, particularly for the Black populations within our domain. 
    more » « less
  5. Reducing buildings’ carbon emissions is an important sustainability challenge. While scheduling flexible building loads has been previously used for a variety of grid and energy optimizations, carbon footprint reduction using such flexible loads poses new challenges since such methods need to balance both energy and carbon costs while also reducing user inconvenience from delaying such loads. This article highlights the potential conflict between electricity prices and carbon emissions and the resulting tradeoffs in carbon-aware and cost-aware load scheduling. To address this tradeoff, we propose GreenThrift, a home automation system that leverages the scheduling capabilities of smart appliances and knowledge of future carbon intensity and cost to reduce both the carbon emissions and costs of flexible energy loads. At the heart of GreenThrift is an optimization technique that automatically computes schedules based on user configurations and preferences. We evaluate the effectiveness of GreenThrift using real-world carbon intensity data, electricity prices, and load traces from multiple locations and across different scenarios and objectives. Our results show that GreenThrift can replicate the offline optimal and retains 97% of the savings when optimizing the carbon emissions. Moreover, we show how GreenThrift can balance the conflict between carbon and cost and retain 95.3% and 85.5% of the potential carbon and cost savings, respectively. 
    more » « less