skip to main content

This content will become publicly available on February 1, 2025

Title: Eastward shift in Juniperus virginiana distribution range under future climate conditions in the Southern Great Plains, United States
Eastern redcedar (Juniperus virginiana, redcedar) is a major woody species encroaching upon the native grasslands and forests of the southern Great Plains (SGP), representing a significant threat to regional ecosystem services. Future climate change is anticipated to influence redcedar habitat suitability, changing the probability of further encroachment and reshaping its spatial distribution. In this study, we trained seven Species Distribution Models (SDMs) with redcedar records from the USDA Forest Inventory Analysis database and used the ensemble of these SDMs to simulate redcedar distribution probability under current and future climate conditions in Kansas, Oklahoma, and Texas. Results reveal a distinct east-to-west gradient of decreasing distribution probability in the study domain, primarily driven by climate aridity. Throughout the 21st century, the optimal range of aridity for redcedar habitat is projected to shift eastwards by 0.7◦ (≈ 58 km) under the RCP45 climate scenario and 1.3◦ (≈ 108 km) under the RCP85. Accordingly, the suitable habitat will shift eastward by 0.6◦ (≈ 49 km) in the RCP45 and by 1.2◦ (≈ 103 km) in the RCP85. The proportion of unsuitable habitat will increase from 40.2 % of the study domain during 2000 – 2019 to 48 % in the RCP45 and 54.2 % in the RCP85 during 2080 – 2099. Additionally, highly suitable land areas will decrease from 10.4 % of the study domain during 2000 – 2019 to 1.3 % in the RCP45 and 0 % in the RCP85 by the end of this century. This study suggests a low likelihood of further redcedar encroachment in the west of the SGP states under future climates, while anticipating continued expansion in the east, gradually replacing the existing oak forests and rangelands. The findings provide valuable insights for prioritizing WPE management resources and contribute to our understanding of future changes in the SGP vegetation composition and their impacts on ecosystem dynamics.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Agricultural and Forest Meteorology Volume 345, 15 February 2024, 109836
Date Published:
Journal Name:
Agricultural and Forest Meteorology
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services. 
    more » « less
  2. Abstract Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s–2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr −1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr −1 . Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to ‘climate debt’. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds’ resilience to the expected environmental changes in the future. 
    more » « less
  3. Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and synoptic winds) overwhelm local controls on vegetation mortality patterns (e.g., vegetation structure and topography), we hypothesized that local controls remain important influences on burn severity patterns in these rugged forested landscapes. To study these influences, we developed remotely sensed fire extent and burn severity maps for two distinct weather periods, thereby isolating the effect of extreme east winds on drivers of burn severity. Our results confirm that wind was the major driver of the 2020 megafires, but also that both vegetation structure and topography significantly affect burn severity patterns even under extreme fuel aridity and winds. Early-seral forests primarily concentrated on private lands, burned more severely than their older and taller counterparts, over the entire megafire event regardless of topography. Meanwhile, mature stands burned severely only under extreme winds and especially on steeper slopes. Although climate change and land-use legacies may prime temperate rainforests to burn more frequently and at higher severities than has been historically observed, our work suggests that future high-severity megafires are only likely to occur during coinciding periods of heat, fuel aridity, and extreme winds. 
    more » « less
  4. Abstract Aim

    Spatially explicit protections of coastal habitats determined on the current distribution of species and ecosystems risk becoming obsolete in 100 years if the movement of species ranges outpaces management action. Hence, a critical step of conservation is predicting the efficacy of management actions in future. We aimed to determine how foundational, habitat‐building species will respond to climate change in Fiji.


    The Republic of Fiji.


    We develop species distribution models (SDMs) using MaxEnt, General Additive Models and Boosted Regression Trees and publicly available data from the Global Biodiversity Information Facility to predict changes in distribution of suitable habitat for mangrove forests, coral habitat, seagrass meadows and critical fisheries invertebrates under several IPCC climate change scenarios in 2070 or 2100. We then overlay predicted distribution models onto existing Fijian protected area network to assess whether today's conservation measures will afford protection to tomorrow's distributions.


    We found that mangrove suitability is projected to decrease along the Coral Coast and increase northward towards the Yasawa Islands due to precipitation changes. The response of seagrass meadows was predicted to be inconsistent and dependent on the climate scenario. Meanwhile, suitability for coral reefs was not predicted to decline significantly overall. The mangrove crabScylla serrata, an important resource for fisherwomen in Fiji, is projected to increase in habitat suitability while economically important sea cucumber species will have highly variable responses to climate change.

    Main conclusions

    Species distribution models are a critical tool for conservation managers, as linking spatial distribution data with future climate change scenarios can aid in the creation and resiliency of protected area programmes. New protected area designations should consider the future distribution of species to maximize benefits to those taxa.

    more » « less
  5. Abstract

    Forests are an incredibly important resource across the globe, yet they are threatened by climate change through stressors such as drought, insect outbreaks, and wildfire. Trailing edge forests—those areas expected to experience range contractions under a changing climate—are of particular concern because of the potential for abrupt conversion to non‐forest. However, due to plant‐climate disequilibrium, broad‐scale forest die‐off and range contraction in trailing edge forests are unlikely to occur over short timeframes (<~25–50 yr) without a disturbance catalyst (e.g., wildfire). This underscores that explicit attention to both climateanddisturbance is necessary to understand how the distribution of forests will respond to climate change. As such, we first identify the expected location of trailing edge forests in the intermountain western United States by mid‐21st century. We then identify those trailing edge forests that have a high probability of stand‐replacing fire and consider such sites to have an elevated risk of fire‐facilitated transition to non‐forest. Results show that 18% of trailing edge forest and 6.6% of all forest are at elevated risk of fire‐facilitated conversion to non‐forest in the intermountain western United States by mid‐21st century. This estimate, however, assumes that fire burns under average weather conditions. For a subset of the study area (the southwestern United States), we were able to incorporate expected fire severity under extreme weather conditions. For this spatial subset, we found that 61% of trailing edge forest and 30% of all forest are at elevated risk of fire‐facilitated conversion to non‐forest under extreme burning conditions. However, due to compounding error in our process that results in unknowable uncertainty, we urge caution in a strict interpretation of these estimates. Nevertheless, our findings suggest the potential for transformed landscapes in the intermountain western United States that will affect ecosystem services such as watershed integrity, wildlife habitat, wood production, and recreation.

    more » « less