skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Competition for time: Evidence for an overlooked, diversity‐maintaining competitive mechanism
Abstract Understanding how diversity is maintained in plant communities requires that we first understand the mechanisms of competition for limiting resources. In ecology, there is an underappreciated but fundamental distinction between systems in which the depletion of limiting resources reduces the growth rates of competitors and systems in which resource depletion reduces the time available for competitors to grow, a mechanism we call ‘competition for time’. Importantly, modern community ecology and our framing of the coexistence problem are built on the implicit assumption that competition reduces the growth rate. However, recent theoretical work suggests competition for time may be the predominant competitive mechanism in a broad array of natural communities, a significant advance given that when species compete for time, diversity‐maintaining trade‐offs emerge organically. In this study, we first introduce competition for time conceptually using a simple model of interacting species. Then, we perform an experiment in a Mediterranean annual grassland to determine whether competition for time is an important competitive mechanism in a field system. Indeed, we find that species respond to increased competition through reductions in their lifespan rather than their rate of growth. In total, our study suggests competition for time may be overlooked as a mechanism of biodiversity maintenance.  more » « less
Award ID(s):
2022213
PAR ID:
10497711
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
3
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although early theoretical work suggests that competition for light erodes successional diversity in forests, verbal models and recent numerical work with complex mechanistic forest simulators suggest that disturbance in such systems can maintain successional diversity. Nonetheless, if and how allocation tradeoffs between competitors interact with disturbance to maintain high diversity in successional systems remains poorly understood. Here, using mechanistic and analytically tractable models, we show that a theoretically unlimited number of coexisting species can be maintained by allocational tradeoffs such as investing in light-harvesting organs vs. height growth, investing in reproduction vs. growth or survival vs. growth. The models describe the successional dynamics of a forest composed of many patches subjected to random or periodic disturbance, and are consistent with physiologically mechanistic terrestrial ecosystem models, including the terrestrial components of recent Earth System Models. We show that coexistence arises in our models because species specialize in the successional time they best exploit the light environment and convert resources into seeds or contribute to advance regeneration. We also show that our results are relevant to non-forested ecosystems by demonstrating the emergence of similar dynamics in a mechanistic model of competition for light among annual plant species. Finally, we show that coexistence in our models is relatively robust to the introduction of intraspecific variability that weakens the competitive hierarchy caused by asymmetric competition for light. 
    more » « less
  2. Abstract Community ecology typically assumes that competitive exclusion and species coexistence are unaffected by evolution on the time scale of ecological dynamics. However, recent studies suggest that rapid evolution operating concurrently with competition may enable species coexistence. Such findings necessitate general theory that incorporates the coexistence contributions of eco‐evolutionary processes in parallel with purely ecological mechanisms and provides metrics for quantifying the role of evolution in shaping competitive outcomes in both modelling and empirical contexts. To foster the development of such theory, here we extend the interpretation of the two principal metrics of modern coexistence theory—niche and competitive ability differences—to systems where competitors evolve. We define eco‐evolutionary versions of these metrics by considering how invading and resident species adapt to conspecific and heterospecific competitors. We show that the eco‐evolutionary niche and competitive ability differences are sums of ecological and evolutionary processes, and that they accurately predict the potential for stable coexistence in previous theoretical studies of eco‐evolutionary dynamics. Finally, we show how this theory frames recent empirical assessments of rapid evolution effects on species coexistence, and how empirical work and theory on species coexistence and eco‐evolutionary dynamics can be further integrated. 
    more » « less
  3. Abstract Microbes adopt a diversity of strategies to successfully compete with coexisting strains for space and resources. One common strategy is the production of toxic compounds to inhibit competitors, but the strength and direction of selection for this strategy varies depending on the environment. Existing theoretical and experimental evidence suggests growth in spatially structured environments makes toxin production more beneficial because competitive interactions are localized. Because higher growth rates reduce the length-scale of interactions in structured environments, theory predicts that toxin production should be especially beneficial under these conditions. We tested this hypothesis by developing a genome-scale metabolic modeling approach and complementing it with comparative genomics to investigate the impact of growth rate on selection for costly toxin production. Our modeling approach expands the current abilities of the dynamic flux balance analysis platform COMETS to incorporate signaling and toxin production. Using this capability, we find that our modeling framework predicts that the strength of selection for toxin production increases as growth rate increases. This finding is supported by comparative genomics analyses that include diverse microbial species. Our work emphasizes that toxin production is more likely to be maintained in rapidly growing, spatially structured communities, thus improving our ability to manage microbial communities and informing natural product discovery. 
    more » « less
  4. ABSTRACT A key to understanding life's great diversity is discerning how competing organisms divide limiting resources to coexist in diverse communities. While temporal resource partitioning has long been hypothesized to reduce the negative effects of interspecific competition, empirical evidence suggests that time may not often be an axis along which animal species routinely subdivide resources. Here, we present evidence to the contrary in the world's most biodiverse group of animals: insect parasites (parasitoids). Specifically, we conducted a meta‐analysis of 64 studies from 41 publications to determine if temporal resource partitioningviavariation in the timing of a key life‐history trait, egg deposition (oviposition), mitigates interspecific competition between species pairs sharing the same insect host. When competing species were manipulated to oviposit at (or near) the same time in or on a single host in the laboratory, competition was common, and one species was typically inherently superior (i.e. survived to adulthood a greater proportion of the time). In most cases, however, the inferior competitor could gain a survivorship advantage by ovipositing earlier (or in a smaller number of cases later) into shared hosts. Moreover, this positive (or in a few cases negative) priority advantage gained by the inferior competitor increased as the interval between oviposition times became greater. The results from manipulative experiments were also correlated with patterns of life‐history timing and demography in nature: the more inherently competitively inferior a species was in the laboratory, the greater the interval between oviposition times of taxa in co‐occurring populations. Additionally, the larger the interval between oviposition times of competing taxa, the more abundant the inferior species was in populations where competitors were known to coexist. Overall, our findings suggest that temporal resource partitioningviavariation in oviposition timing may help to facilitate species coexistence and structures diverse insect communities by altering demographic measures of species success. We argue that the lack of evidence for a more prominent role of temporal resource partitioning in promoting species coexistence may reflect taxonomic differences, with a bias towards larger‐sized animals. For smaller species like parasitic insects that are specialized to attack one or a group of closely related hosts, have short adult lifespans and discrete generation times, compete directly for limited resources in small, closed arenas and have life histories constrained by host phenology, temporal resource subdivisionviavariation in life history may play a critical role in allowing species to coexist by alleviating the negative effects of interspecific competition. 
    more » « less
  5. null (Ed.)
    In most environments, organisms compete for limited resources. The number and relative abundance of species that an ecosystem can host is referred to as ‘species diversity’. The competitive-exclusion principle is a hypothesis which proposes that, in an ecosystem, competition for resources results in decreased diversity: only species best equipped to consume the available resources thrive, while their less successful competitors die off. However, many natural ecosystems foster a wide array of species despite offering relatively few resources. Researchers have proposed many competing theories to explain how this paradox can emerge, but they have mainly focused on ecosystems where nutrients are steadily supplied. By contrast, less is known about the way species diversity is maintained when nutrients are only intermittently available, for example in ecosystems that have seasons. To address this question, Erez, Lopez et al. modeled communities of bacteria in which nutrients were repeatedly added and then used up. Depending on conditions, a variety of relationships between the amount of nutrient supplied and community diversity could emerge, suggesting that ecosystems do not follow a simple, universal rule that dictates species diversity. In particular, the resulting communities displayed a higher diversity of microbes than the limit imposed by the competitive-exclusion principle. Further observations allowed Erez, Lopez et al. to suggest guiding principles for when diversity in ecosystems will be maintained or lost. In this framework, ‘early-bird’ species, which rapidly use a subset of the available nutrients, grow to dominate the ecosystem. Even though ‘late-bird’ species are more effective at consuming the remaining resources, they cannot compete with the increased sheer numbers of the ‘early-birds’, leading to a ‘rich-get-richer’ phenomenon. Oceanic plankton, arctic permafrost and many other threatened, resource-poor ecosystems across the world can dramatically influence our daily lives. Closer to home, shifts in the microbe communities that live on the surface of the human body and in the digestive system are linked to poor health. Understanding how species diversity emerges and changes will help to protect our external and internal environments. 
    more » « less