skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Free outer functions in complete Pick spaces
Jury and Martin establish an analogue of the classical inner-outer factorization of Hardy space functions. They show that every function f f in a Hilbert function space with a normalized complete Pick reproducing kernel has a factorization of the type f = φ<#comment/> g f=\varphi g , where g g is cyclic, φ<#comment/> \varphi is a contractive multiplier, and ‖<#comment/> f ‖<#comment/> = ‖<#comment/> g ‖<#comment/> \|f\|=\|g\| . In this paper we show that if the cyclic factor is assumed to be what we call free outer, then the factors are essentially unique, and we give a characterization of the factors that is intrinsic to the space. That lets us compute examples. We also provide several applications of this factorization.  more » « less
Award ID(s):
2054199
PAR ID:
10499565
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Math Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
376
Issue:
1066
ISSN:
0002-9947
Page Range / eLocation ID:
1929 to 1978
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by recent work on optimal approximation by polynomials in the unit disk, we consider the following noncommutative approximation problem: for a polynomial f f in d d freely noncommuting arguments, find a free polynomial p n p_n , of degree at most n n , to minimize c n ‖<#comment/> p n f −<#comment/> 1 ‖<#comment/> 2 c_n ≔\|p_nf-1\|^2 . (Here the norm is the ℓ<#comment/> 2 \ell ^2 norm on coefficients.) We show that c n →<#comment/> 0 c_n\to 0 if and only if f f is nonsingular in a certain nc domain (the row ball), and prove quantitative bounds. As an application, we obtain a new proof of the characterization of polynomials cyclic for the d d -shift. 
    more » « less
  2. We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting J k −<#comment/> 1 ( s ) = ∫<#comment/> 0 s t k −<#comment/> 1 e −<#comment/> t 2 2 d t J_{k-1}(s)=\int ^s_0 t^{k-1} e^{-\frac {t^2}{2}}dt and c k −<#comment/> 1 = J k −<#comment/> 1 ( + ∞<#comment/> ) c_{k-1}=J_{k-1}(+\infty ) , we conjecture that the function F : [ 0 , 1 ] →<#comment/> R F:[0,1]\rightarrow \mathbb {R} , given by F ( a ) = ∑<#comment/> k = 1 n 1 a ∈<#comment/> E k ⋅<#comment/> ( β<#comment/> k J k −<#comment/> 1 −<#comment/> 1 ( c k −<#comment/> 1 a ) + α<#comment/> k ) \begin{equation*} F(a)= \sum _{k=1}^n 1_{a\in E_k}\cdot (\beta _k J_{k-1}^{-1}(c_{k-1} a)+\alpha _k) \end{equation*} (with an appropriate choice of a decomposition [ 0 , 1 ] = ∪<#comment/> i E i [0,1]=\cup _{i} E_i and coefficients α<#comment/> i , β<#comment/> i \alpha _i, \beta _i ) satisfies, for all symmetric convex sets K K and L L , and any λ<#comment/> ∈<#comment/> [ 0 , 1 ] \lambda \in [0,1] , F ( γ<#comment/> ( λ<#comment/> K + ( 1 −<#comment/> λ<#comment/> ) L ) ) ≥<#comment/> λ<#comment/> F ( γ<#comment/> ( K ) ) + ( 1 −<#comment/> λ<#comment/> ) F ( γ<#comment/> ( L ) ) . \begin{equation*} F\left (\gamma (\lambda K+(1-\lambda )L)\right )\geq \lambda F\left (\gamma (K)\right )+(1-\lambda ) F\left (\gamma (L)\right ). \end{equation*} We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set K K , itsGaussian concavity power p s ( K , γ<#comment/> ) p_s(K,\gamma ) is greater than or equal to p s ( R B 2 k ×<#comment/> R n −<#comment/> k , γ<#comment/> ) p_s(RB^k_2\times \mathbb {R}^{n-k},\gamma ) , for some k ∈<#comment/> { 1 , …<#comment/> , n } k\in \{1,\dots ,n\} . We call the sets R B 2 k ×<#comment/> R n −<#comment/> k RB^k_2\times \mathbb {R}^{n-k} round k k -cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94]. In this manuscript, we make progress towards this question, and show that for any symmetric convex set K K in R n \mathbb {R}^n , p s ( K , γ<#comment/> ) ≥<#comment/> sup F ∈<#comment/> L 2 ( K , γ<#comment/> ) ∩<#comment/> L i p ( K ) : ∫<#comment/> F = 1 ( 2 T γ<#comment/> F ( K ) −<#comment/> V a r ( F ) ) + 1 n −<#comment/> E X 2 , \begin{equation*} p_s(K,\gamma )\geq \sup _{F\in L^2(K,\gamma )\cap Lip(K):\,\int F=1} \left (2T_{\gamma }^F(K)-Var(F)\right )+\frac {1}{n-\mathbb {E}X^2}, \end{equation*} where T γ<#comment/> F ( K ) T_{\gamma }^F(K) is the F −<#comment/> F- torsional rigidity of K K with respect to the Gaussian measure.Moreover, the equality holds if and only if K = R B 2 k ×<#comment/> R n −<#comment/> k K=RB^k_2\times \mathbb {R}^{n-k} for some R > 0 R>0 and k = 1 , …<#comment/> , n k=1,\dots ,n .As a consequence, we get p s ( K , γ<#comment/> ) ≥<#comment/> Q ( E | X | 2 , E ‖<#comment/> X ‖<#comment/> K 4 , E ‖<#comment/> X ‖<#comment/> K 2 , r ( K ) ) , \begin{equation*} p_s(K,\gamma )\geq Q(\mathbb {E}|X|^2, \mathbb {E}\|X\|_K^4, \mathbb {E}\|X\|^2_K, r(K)), \end{equation*} where Q Q is a certain rational function of degree 2 2 , the expectation is taken with respect to the restriction of the Gaussian measure onto K K , ‖<#comment/> ⋅<#comment/> ‖<#comment/> K \|\cdot \|_K is the Minkowski functional of K K , and r ( K ) r(K) is the in-radius of K K . The result follows via a combination of some novel estimates, the L 2 L2 method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185;Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity. As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments. In addition, we provide a non-sharp estimate for a function F F whose composition with γ<#comment/> ( K ) \gamma (K) is concave in the Minkowski sense for all symmetric convex sets. 
    more » « less
  3. We say a null-homologous knot K K in a 3 3 -manifold Y Y has Property G, if the Thurston norm and fiberedness of the complement of K K is preserved under the zero surgery on K K . In this paper, we will show that, if the smooth 4 4 -genus of K ×<#comment/> { 0 } K\times \{0\} (in a certain homology class) in ( Y ×<#comment/> [ 0 , 1 ] ) #<#comment/> N C P 2 ¯<#comment/> (Y\times [0,1])\#N\overline {\mathbb CP^2} , where Y Y is a rational homology sphere, is smaller than the Seifert genus of K K , then K K has Property G. When the smooth 4 4 -genus is 0 0 , Y Y can be taken to be any closed, oriented 3 3 -manifold. 
    more » « less
  4. In this paper we derive the best constant for the following L ∞<#comment/> L^{\infty } -type Gagliardo-Nirenberg interpolation inequality ‖<#comment/> u ‖<#comment/> L ∞<#comment/> ≤<#comment/> C q , ∞<#comment/> , p ‖<#comment/> u ‖<#comment/> L q + 1 1 −<#comment/> θ<#comment/> ‖<#comment/> ∇<#comment/> u ‖<#comment/> L p θ<#comment/> , θ<#comment/> = p d d p + ( p −<#comment/> d ) ( q + 1 ) , \begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*} where parameters q q and p p satisfy the conditions p > d ≥<#comment/> 1 p>d\geq 1 , q ≥<#comment/> 0 q\geq 0 . The best constant C q , ∞<#comment/> , p C_{q,\infty ,p} is given by C q , ∞<#comment/> , p = θ<#comment/> −<#comment/> θ<#comment/> p ( 1 −<#comment/> θ<#comment/> ) θ<#comment/> p M c −<#comment/> θ<#comment/> d , M c ∫<#comment/> R d u c , ∞<#comment/> q + 1 d x , \begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*} where u c , ∞<#comment/> u_{c,\infty } is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when u = A u c , ∞<#comment/> ( λ<#comment/> ( x −<#comment/> x 0 ) ) u=Au_{c,\infty }(\lambda (x-x_0)) for any real numbers A A , λ<#comment/> > 0 \lambda >0 and x 0 ∈<#comment/> R d x_{0}\in \mathbb {R}^d . In fact, the generalized Lane-Emden equation in R d \mathbb {R}^d contains a delta function as a source and it is a Thomas-Fermi type equation. For q = 0 q=0 or d = 1 d=1 , u c , ∞<#comment/> u_{c,\infty } have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that u c , m →<#comment/> u c , ∞<#comment/> u_{c,m}\to u_{c,\infty } and C q , m , p →<#comment/> C q , ∞<#comment/> , p C_{q,m,p}\to C_{q,\infty ,p} as m →<#comment/> + ∞<#comment/> m\to +\infty for d = 1 d=1 , where u c , m u_{c,m} and C q , m , p C_{q,m,p} are the function achieving equality and the best constant of L m L^m -type Gagliardo-Nirenberg interpolation inequality, respectively. 
    more » « less
  5. By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid { 0 , 1 , …<#comment/> , n } 2 \{0,1,\dots , n\}^2 has L 1 L_1 -distortion bounded below by a constant multiple of log ⁡<#comment/> n \sqrt {\log n} . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if { G n } n = 1 ∞<#comment/> \{G_n\}_{n=1}^\infty is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number δ<#comment/> ∈<#comment/> [ 2 , ∞<#comment/> ) \delta \in [2,\infty ) , then the 1-Wasserstein metric over G n G_n has L 1 L_1 -distortion bounded below by a constant multiple of ( log ⁡<#comment/> | G n | ) 1 δ<#comment/> (\log |G_n|)^{\frac {1}{\delta }} . We proceed to compute these dimensions for ⊘<#comment/> \oslash -powers of certain graphs. In particular, we get that the sequence of diamond graphs { D n } n = 1 ∞<#comment/> \{\mathsf {D}_n\}_{n=1}^\infty has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over D n \mathsf {D}_n has L 1 L_1 -distortion bounded below by a constant multiple of log ⁡<#comment/> | D n | \sqrt {\log | \mathsf {D}_n|} . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of L 1 L_1 -embeddable graphs whose sequence of 1-Wasserstein metrics is not L 1 L_1 -embeddable. 
    more » « less