Motivated by recent work on optimal approximation by polynomials in the unit disk, we consider the following noncommutative approximation problem: for a polynomial in freely noncommuting arguments, find a free polynomial , of degree at most , to minimize . (Here the norm is the norm on coefficients.) We show that if and only if is nonsingular in a certain nc domain (the row ball), and prove quantitative bounds. As an application, we obtain a new proof of the characterization of polynomials cyclic for the -shift.
more »
« less
Free outer functions in complete Pick spaces
Jury and Martin establish an analogue of the classical inner-outer factorization of Hardy space functions. They show that every function in a Hilbert function space with a normalized complete Pick reproducing kernel has a factorization of the type , where is cyclic, is a contractive multiplier, and . In this paper we show that if the cyclic factor is assumed to be what we call free outer, then the factors are essentially unique, and we give a characterization of the factors that is intrinsic to the space. That lets us compute examples. We also provide several applications of this factorization.
more »
« less
- Award ID(s):
- 2054199
- PAR ID:
- 10499565
- Publisher / Repository:
- American Math Society
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- Volume:
- 376
- Issue:
- 1066
- ISSN:
- 0002-9947
- Page Range / eLocation ID:
- 1929 to 1978
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting and , we conjecture that the function , given by (with an appropriate choice of a decomposition and coefficients ) satisfies, for all symmetric convex sets and , and any , We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set , itsGaussian concavity power is greater than or equal to , for some . We call the sets round -cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94]. In this manuscript, we make progress towards this question, and show that for any symmetric convex set in , where is the torsional rigidity of with respect to the Gaussian measure.Moreover, the equality holds if and only if for some and .As a consequence, we get where is a certain rational function of degree , the expectation is taken with respect to the restriction of the Gaussian measure onto , is the Minkowski functional of , and is the in-radius of . The result follows via a combination of some novel estimates, the method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185;Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity. As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments. In addition, we provide a non-sharp estimate for a function whose composition with is concave in the Minkowski sense for all symmetric convex sets.more » « less
-
We say a null-homologous knot in a -manifold has Property G, if the Thurston norm and fiberedness of the complement of is preserved under the zero surgery on . In this paper, we will show that, if the smooth -genus of (in a certain homology class) in , where is a rational homology sphere, is smaller than the Seifert genus of , then has Property G. When the smooth -genus is , can be taken to be any closed, oriented -manifold.more » « less
-
In this paper we derive the best constant for the following -type Gagliardo-Nirenberg interpolation inequality where parameters and satisfy the conditions , . The best constant is given by where is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when for any real numbers , and . In fact, the generalized Lane-Emden equation in contains a delta function as a source and it is a Thomas-Fermi type equation. For or , have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that and as for , where and are the function achieving equality and the best constant of -type Gagliardo-Nirenberg interpolation inequality, respectively.more » « less
-
By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid has -distortion bounded below by a constant multiple of . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number , then the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . We proceed to compute these dimensions for -powers of certain graphs. In particular, we get that the sequence of diamond graphs has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of -embeddable graphs whose sequence of 1-Wasserstein metrics is not -embeddable.more » « less
An official website of the United States government

