skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A ±0.5-mV-Minimum-Input DC-DC Converter With Stepwise Adiabatic Gate-Drive and Efficient Timing Control for Thermoelectric Energy Harvesting
This paper presents a step-up DC-DC converter that uses a stepwise gate-drive technique to reduce the power FET gate-drive energy by 82%, allowing positive efficiency down to an input voltage of ±0.5 mV—the lowest input voltage ever achieved for a DC-DC converter as far as we know. Below ±0.5 mV the converter automatically hibernates, reducing quiescent power consumption to just 255 pW. The converter has an efficiency of 63% at ±1 mV and 84% at ±6 mV. The input impedance is programmable from 1 Ω to 600 Ω to achieve maximum power extraction. A novel delay line circuit controls the stepwise gatedrive timing, programmable input impedance, and hibernation behavior. Bipolar input voltage is supported by using a flyback converter topology with two secondary windings. A generated power good signal enables the load when the output voltage has charged above 2.7 V and disables when the output voltage has discharged below 2.5 V. The DC-DC converter was used in a thermoelectric energy harvesting system that effectively harvests energy from small indoor temperature fluctuations of less than 1°C. Also, an analytical model with unprecedented accuracy of the stepwise gate-drive energy is presented.  more » « less
Award ID(s):
1823148
PAR ID:
10503534
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Circuits and Systems I: Regular Papers
Volume:
70
Issue:
2
ISSN:
1549-8328
Page Range / eLocation ID:
977 to 990
Subject(s) / Keyword(s):
Energy harvesting, DC-DC converter, bipolar, flyback converter, low-voltage, low-power, adiabatic gate-drive, stepwise gate-drive, charge recycling, thermoelectric generator.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents the integration of an AC-DC rectifier and a DC-DC boost converter circuit designed in 180 nm CMOS process for ultra-low frequency (<; 10 Hz) energy harvesting applications. The proposed rectifier is a very low voltage CMOS rectifier circuit that rectifies the low-frequency signal of 100-250 mV amplitude and 1-10 Hz frequency into DC voltage. In this work, the energy is harvested from the REWOD (reverse electrowetting-on-dielectric) generator, which is a reverse electrowetting technique that converts mechanical vibrations to electrical energy. The objective is to develop a REWOD-based self-powered motion (such as walking, running, jogging, etc.) tracking sensors that can be worn, thus harvesting energy from regular activities. To this end, the proposed circuits are designed in such a way that the output from the REWOD is rectified and regulated using a DC-DC converter which is a 5-stage cross-coupled switching circuit. Simulation results show a voltage range of 1.1 V-2.1 V, i.e., 850-1200% voltage conversion efficiency (VCE) and 30% power conversion efficiency (PCE) for low input signal in the range 100-250 mV in the low-frequency range. This performance verifies the integration of the rectifier and DC-DC boost converter which makes it highly suitable for various motion-based energy harvesting applications. 
    more » « less
  2. Summary Inductive power transfer has become an emerging technology for its significant benefits in many applications, including mobile phones, laptops, electric vehicles, implanted bio‐sensors, and internet of things (IoT) devices. In modern applications, a direct current–direct current (DC–DC) converter is one of the essential components to regulate the output supply voltage for achieving the desired characteristics, that is, steady voltage with lower peak ripples. This paper presents a switched‐capacitor (SC) DC–DC converter using complementary architecture to provide a regulated DC voltage with an increased dynamic response. The proposed topology enhances the converter efficiency by decreasing the equivalent output resistance to half by connecting two symmetric SC single ladder converters. The proposed converter is designed using the standard 130‐nm BiCMOS process. The results show that the proposed architecture produces 327‐mV DC output with a rise time of 60.1 ns and consumes 3.449‐nW power for 1.0‐V DC supply. The output settling time is 43.6% lower than the single‐stage SC DC–DC converter with an input frequency of 200 MHz. The comparison results show that the proposed converter has a higher power conversion efficiency of 93.87%and a lower power density of 0.57 mW/mm2compared to the existing works. 
    more » « less
  3. null (Ed.)
    A new high-voltage-gain non-isolated dc-dc topology for applications in renewable energies is proposed. A coupled inductor with three windings is used to increase the proposed topology voltage gain. In addition to increasing the voltage gain, the proposed topology also has other prominent features including continuous input current and zero dc magnetizing inductance current, which reduces the losses and size of coupled inductor core. Furthermore, the continuous input current guarantees a low-volume input filter, which is essential for renewable energy applications. The leakage inductor stored energy is recycled via the diode and capacitor and transferred to the converter output for increasing the efficiency and reducing voltage stresses on the converter components. 
    more » « less
  4. This paper demonstrates a high-efficiency modular multilevel resonant DC-DC converter (MMRC) with zero-voltage switching (ZVS) capability. In order to minimize the conduction loss in the converter, optimizing the root-mean-square (RMS) current flowing through switching devices is considered an effective approach. The analysis of circuit configuration and operating principle show that the RMS value of the current flowing through switching devices is closely related to the factors such as the resonant tank parameters, switching frequency, converter output voltage and current, etc. A quantitative analysis that considers all these factors has been performed to evaluate the RMS current of all the components in the circuit. When the circuit parameters are carefully designed, the switch current waveform can be close to the square waveform, which has a low RMS value and results in low conduction loss. And a design example based on the theoretical analysis is presented to show the design procedures of the presented converter. A 600 W 48 V-to-12 V prototype is built with the parameters obtained from the design example section. Simulation and experiments have been performed to verify the high-efficiency feature of the designed converter. The measured converter peak efficiency reaches 99.55% when it operates at 200 kHz. And its power density can be as high as 795 W/in 3 . 
    more » « less
  5. null (Ed.)
    A high-voltage-gain dc-dc converter topology is proposed for renewable energy applications. The proposed coupled-inductor-based high-gain dc-dc converter features reduced input current ripple. The semiconductor elements voltage spikes due to the leakage inductance are prevented through the use of a clamping circuit. The Clamping circuit helps recover the leakage inductance stored energy, which causes voltage spikes on the switch. This results in the selection of elements with lower voltage ratings. Power switches with lower voltage ratings lead to lower conduction losses and improved system efficiency. The DC component of the inductor magnetizing current is zero. Consequently, no energy is stored in the inductor core, and the losses are further reduced. 
    more » « less