skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on April 17, 2025

Title: Scanner: Simultaneously temporal trend and spatial cluster detection for spatial‐temporal data
Abstract

Identifying the underlying trajectory pattern in the spatial‐temporal data analysis is a fundamental but challenging task. In this paper, we study the problem of simultaneously identifying temporal trends and spatial clusters of spatial‐temporal trajectories. To achieve this goal, we propose a novel method named spatial clustered and sparse nonparametric regression (). Our method leverages the B‐spline model to fit the temporal data and penalty terms on spline coefficients to reveal the underlying spatial‐temporal patterns. In particular, our method estimates the model by solving a doubly‐penalized least square problem, in which we use a group sparse penalty for trend detection and a spanning tree‐based fusion penalty for spatial cluster recovery. We also develop an algorithm based on the alternating direction method of multipliers (ADMM) algorithm to efficiently minimize the penalized least square loss. The statistical consistency properties of estimator are established in our work. In the end, we conduct thorough numerical experiments to verify our theoretical findings and validate that our method outperforms the existing competitive approaches.

 
more » « less
Award ID(s):
2316353
NSF-PAR ID:
10504173
Author(s) / Creator(s):
;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Environmetrics
ISSN:
1180-4009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A popular method for flexible function estimation in nonparametric models is the smoothing spline. When applying the smoothing spline method, the nonparametric function is estimated via penalized least squares, where the penalty imposes a soft constraint on the function to be estimated. The specification of the penalty functional is usually based on a set of assumptions about the function. Choosing a reasonable penalty function is the key to the success of the smoothing spline method. In practice, there may exist multiple sets of widely accepted assumptions, leading to different penalties, which then yield different estimates. We refer to this problem as the problem of ambiguous penalties. Neglecting the underlying ambiguity and proceeding to the model with one of the candidate penalties may produce misleading results. In this article, we adopt a Bayesian perspective and propose a fully Bayesian approach that takes into consideration all the penalties as well as the ambiguity in choosing them. We also propose a sampling algorithm for drawing samples from the posterior distribution. Data analysis based on simulated and real‐world examples is used to demonstrate the efficiency of our proposed method.

     
    more » « less
  2. In many real-world applications of monitoring multivariate spatio-temporal data that are non-stationary over time, one is often interested in detecting hot-spots with spatial sparsity and temporal consistency, instead of detecting system-wise changes as in traditional statistical process control (SPC) literature. In this paper, we propose an efficient method to detect hot-spots through tensor decomposition, and our method has three steps. First, we fit the observed data into a Smooth Sparse Decomposition Tensor (SSD-Tensor) model that serves as a dimension reduction and de-noising technique: it is an additive model decomposing the original data into: smooth but non-stationary global mean, sparse local anomalies, and random noises. Next, we estimate model parameters by the penalized framework that includes Least Absolute Shrinkage and Selection Operator (LASSO) and fused LASSO penalty. An efficient recursive optimization algorithm is developed based on Fast Iterative Shrinkage Thresholding Algorithm (FISTA). Finally, we apply a Cumulative Sum (CUSUM) Control Chart to monitor model residuals after removing global means, which helps to detect when and where hot-spots occur. To demonstrate the usefulness of our proposed SSD-Tensor method, we compare it with several other methods including scan statistics, LASSO-based, PCA-based, T2-based control chart in extensive numerical simulation studies and a real crime rate dataset. 
    more » « less
  3. We develop a sparse image reconstruction method for polychromatic tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of the density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme. 
    more » « less
  4. Summary

    In high dimensional model selection problems, penalized least square approaches have been extensively used. The paper addresses the question of both robustness and efficiency of penalized model selection methods and proposes a data-driven weighted linear combination of convex loss functions, together with weighted L1-penalty. It is completely data adaptive and does not require prior knowledge of the error distribution. The weighted L1-penalty is used both to ensure the convexity of the penalty term and to ameliorate the bias that is caused by the L1-penalty. In the setting with dimensionality much larger than the sample size, we establish a strong oracle property of the method proposed that has both the model selection consistency and estimation efficiency for the true non-zero coefficients. As specific examples, we introduce a robust method of composite L1–L2, and an optimal composite quantile method and evaluate their performance in both simulated and real data examples.

     
    more » « less
  5. We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements for single-material objects and express the mass-attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density-map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov’s proximal-gradient (NPG) step for estimating the density-map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. We establish conditions for biconvexity of the penalized NLL objective function, which, if satisfied, ensures monotonicity of the NPG-BFGS iteration. We also show that the penalized NLL objective satisfies the Kurdyka-Łojasiewicz property, which is important for establishing local convergence of block-coordinate descent schemes in biconvex optimization problems. Simulation examples demonstrate the performance of the proposed scheme. 
    more » « less