skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward Sub-Gram Helicopters: Designing a Miniaturized Flybar for Passive Stability
Sub-gram flying robots have transformative potential in applications from search and rescue to precision agriculture to environmental monitoring. However, a key gap in achieving autonomous flight for these applications is the low lift to weight ratio of flapping wing and quadrotor designs around 1 g or less. To close this gap, we propose a helictoper-style design that minimizes size and weight by leveraging the high lift, reliability, and low-voltage of sub-gram motors. We take an important step to enable this goal by designing a light-weight, micfrofabricated flybar mechanism to passively stabilize such a robot. Our 48 mg flybar is folded from a flat carbon fiber laminate into a 3D mechanism that couples tilting of the flybar to a change in the angle of attack of the rotors. Our design uses flexure joints instead of ball-in-socket joints common in larger flybars. To expedite the design exploration and optimization of a microfabricated flat-folded flybar, we develop a novel user-in-the-loop bi-level optimization workflow that combines Bayesian optimization design tools and expert feedback. We develop four template designs and use this method to achieve a peak damping ratio of 0.528, an 18.9x improvement from our initial design. Compared to a flybar-less rotor with a near 0 damping ratio, our flybar-rotor mechanism maintains a stable roll and pitch with relative deviations < 1°. Our results show that, if combined with a counter-torque mechanism such as a tail rotor, our miniaturized flybar could mechanically provide attitude stability for a sub-gram helicopter.  more » « less
Award ID(s):
2054850
PAR ID:
10504544
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN:
978-1-6654-9190-7
Page Range / eLocation ID:
2701 to 2708
Format(s):
Medium: X
Location:
Detroit, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. A significant challenge in the design of fully superconducting (SC) machines is managing ac losses in the SC armature. Recent developments in MgB2 superconducting conductors promise low ac loss conductors suitable for fully SC machines. This paper presents an optimized design targeting low losses and low weight for a 10-MW fully SC generator suitable for offshore wind turbine applications. An outer rotor air-core machine topology is investigated to optimize the design with low weight and low losses. An active shielding concept is used to minimize the pole count without adding excessive weight. This enables a reduction in the electrical frequency for a practical design by a factor of 4 to 5 over current designs, driving ac losses and active components weight lower by an order of magnitude. In this study, armature current is varied to control electrical and magnetic loading in order to minimize losses. A pole count study is conducted to identify the design space suitable for MW scale machines. A comparison is made between active shield, passive shield and a hybrid topology to address the benefits of an active shield for weight reduction. Results suggest that low-pole-count designs with MgB2 conductors will enable machines with less than 1 kW of ac losses. 
    more » « less
  2. null (Ed.)
    Abstract This paper presents tools and methods to design cylindrical and conical developable mechanisms from flat, planar patterns. Equations are presented that relate the link lengths and link angles of planar and spherical mechanisms to the dimensions in a flat configuration. These flat patterns can then be formed into curved, developable mechanisms. Guidelines are established to determine if a mechanism described by a flat pattern can exhibit intramobile or extramobile behavior. A developable mechanism can only potentially exhibit intramobile or extramobile behavior if none of the links extend beyond half of the flat pattern. The behavior of a mechanism can change depending on the location of the cut of the flat pattern. Different joint designs are discussed including lamina emergent torsional (LET) joints. Physical examples are presented. 
    more » « less
  3. Continuously increasing offshore wind turbine scales require rotor designs that maximize power and performance. Downwind rotors offer advantages in lower mass due to reduced potential for tower strike, and is especially true at large scales, e.g., for a 25 MW turbine. In this study, three 25 MW downwind rotors, each with different prescribed lift coefficient distributions were designed (chord, geometry, and twist) and compared to maximize power production at unprecedented scales and Reynolds numbers, including a new approach to optimize rotor tilt and coning based on aeroelastic effects. To achieve this objective the design process was focused on achieving high power coefficients, while maximizing swept area and minimizing blade mass. Maximizing swept area was achieved by prescribing pre-cone and shaft tilt angles to ensure the aeroelastic orientation when the blades point upwards was nearly vertical at nearly rated conditions. Maximizing the power coefficient was achieved by prescribing axial induction factor and lift coefficient distributions which were then used as inputs for an inverse rotor design tool. The resulting rotors were then simulated to compare performance and subsequently optimized for minimum rotor mass. To achieve these goals, a high Reynolds number design space was developed using computational predictions as well as new empirical correlations for flatback airfoil drag and maximum lift. Within this design space, three rotors of small, medium and large chords were considered for clean airfoil conditions (effects of premature transition were also considered but did not significantly modify the design space). The results indicated that the medium chord design provided the best performance, producing the highest power in Region 2 from simulations while resulting in the lowest rotor mass, both of which support minimum LCOE. The methodology developed herein can be used for the design of other extreme-scale (upwind and downwind) turbines. 
    more » « less
  4. Two of the main challenges in origami antenna designs are creating a reliable hinge and achieving precise actuation for optimal electromagnetic (EM) performance. Herein, a waterbomb origami ring antenna is introduced, integrating the waterbomb origami principle, 3D‐printed liquid metal (LM) hinges, and robotic shape morphing. The approach, combining 3D printing, robotic actuation, and innovative antenna design, enables various origami folding patterns, enhancing both portability and EM performance. This antenna's functionality has been successfully demonstrated, displaying its communication capabilities with another antenna and its ability to navigate narrow spaces on a remote‐controlled wheel robot. The 3D‐printed LM hinge exhibits low DC resistance (200 ± 1.6 mΩ) at both flat and folded state, and, with robotic control, the antenna achieves less than 1° folding angle accuracy and a 66% folding area ratio. The antenna operates in two modes at 2.08 and 2.4 GHz, ideal for fixed mobile use and radiolocation. Through extensive simulations and experiments, the antenna is evaluated in both flat and folded states, focusing on resonant frequency, gain patterns, and hinge connectivity. The findings confirm that the waterbomb origami ring antenna consistently maintains EM performance during folding and unfolding, with stable resonant frequencies and gain patterns, proving the antenna's reliability and adaptability for use in portable and mobile devices. 
    more » « less
  5. Having a well-rounded fixed leg design for a quadruped inevitably limits performance across diverse tasks, while tunability enables specialization and leads to better performance. This paper introduces a sub-500-gram quadruped robot with a rich leg design space. Made with laminate design and fabrication techniques, its legs have a range of tunable design parameters, including leg length, transmission ratio, and passive parallel and series stiffness. The legs are also straightforward to model, low-cost, and fast to manufacture. We propose methods to span the leg’s feasible design space and construct simulation environments for training a locomotion policy with reinforcement learning to remove the need for manual controller design and tuning. This policy not only works across leg designs but also exploits the unique dynamics of each leg for better locomotion. A curation process is employed to select designs given performance goals, which is more interpretable than optimization and provides insights for design improvements and discoveries of design principles. Thanks to the tight integration of design, fabrication, simulation, and control, our proposed pipeline produces leg designs with performance that aligns with the simulation, while the learned locomotion policy can be used successfully on the real robot. The fast longitudinal running design reaches a maximum speed of 0.7 m/s or 5.4 body lengths per second, and the low cost of transport (COT) design has a COT of 0.3. 
    more » « less