The growing disparity between food supply and demand requires innovative Digital Agriculture (DA) systems to increase farm sustainability and profitability. However, current systems suffer from problems of complexity. To increase farm efficiency and understand the tradeoffs of these new DA innovations we developed ROAM, which is a decision support system developed to find a Pareto optimal architectural design to build DA systems. Based on data from five live deployments at Cornell University, each DA design can be analyzed based on user defined metrics and evaluated under uncertain farming environments with ROAM. Paired with this, we develop a web interface that allows users to define personalized decision spaces and to visualize decision tradeoffs. To help validate ROAM, it was deployed to a commercial farm where the user was recommended a method to increase farm efficiency. ROAM allows users to quickly make key decisions in designing their DA systems to increase farm profitability.
more »
« less
This content will become publicly available on August 1, 2025
Realtime optimization and management system (ROAM): A decision support system for digital agriculture systems
The growing disparity between food supply and demand requires innovative Digital Agriculture (DA) systems to increase farm sustainability and profitability. However, current systems suffer from problems of complexity stemming from the challenge of integrating diverse, often non-interoperable hardware and software components. In order to tackle these complexities to increase farm efficiency and understand the tradeoffs of these new DA innovations we developed Realtime Optimization and Management System (ROAM), which is a decision-support system developed to find a Pareto optimal architectural design to build DA systems. To find the Pareto optimal solution, we employed the Rhodium Multi-Objective Evolutionary Algorithm (MOEA), which systematically evaluates the trade-offs in DA system designs. Based on data from five live deployments at Cornell University, each DA design can be analyzed based on user defined objectives and evaluated under uncertain farming environments with ROAM. Paired with this, we develop a web interface that allows users to define personalized decision spaces and visualize decision tradeoffs. To help validate ROAM, it was deployed to a commercial farm where the user was recommended a DA architecture design method to increase farm efficiency. ROAM allows users to quickly make key decisions in designing their DA systems to increase farm profitability.
more »
« less
- Award ID(s):
- 1955125
- NSF-PAR ID:
- 10511240
- Publisher / Repository:
- Elsevier, Science Direct
- Date Published:
- Journal Name:
- Smart Agricultural Technology
- Volume:
- 8
- Issue:
- 100452
- ISSN:
- 2772-3755
- Page Range / eLocation ID:
- 1-12
- Subject(s) / Keyword(s):
- Digital agriculture Decision making under deep uncertainty Systems optimization Systems engineering Internet of things Sustainability
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work is an experience with a deployed networked system for digital agriculture (or DA). Digital agriculture is the use of data-driven techniques towards a sustainable increase in farm productivity and efficiency. DA systems are expected to be overlaid on existing rural infrastructures, which are known to be less robust. While existing DA approaches partially address several infrastructure issues, challenges related to data aggregation, data analytics, and fault tolerance remain open. In this work, we present the design of Comosum, an extensible, reconfigurable, and fault-tolerant architecture of hardware, software, and distributed cloud abstractions to sense, analyze, and actuate on different farm types. FarmBIOS is an implementation of the Comosum architecture. We analyze FarmBIOS by leveraging various applications, deployment experiences, and network differences between urban and rural farms. This includes, for instance, an edge analytics application achieving 86% accuracy in vineyard disease detection. An eighteen-month deployment of FarmBIOS highlights Comosum’s fault tolerance. It was fault tolerant to intermittent network outages that lasted for several days during many periods of the deployment. We introduce active digital twins to cope with the unreliability of the underlying base systems.more » « less
-
Given the fundamental tradeoff between run-time and recovery performance, current distributed systems often build application-specific recovery strategies to minimize overheads. However, it is increasingly common for different applications to be composed into heterogeneous pipelines. Implementing multiple interoperable recovery techniques in the same system is rare and difficult. Thus, today's users must choose between: (1) building on a single system, and face a fixed choice of performance vs. recovery overheads, or (2) the challenging task of stitching together multiple systems that can offer application-specific tradeoffs. We present ExoFlow, a universal workflow system that enables a flexible choice of recovery vs. performance tradeoffs, even within the same application. The key insight behind our solution is to decouple execution from recovery and provide exactly-once semantics as a separate layer from execution. For generality, workflow tasks can return references that capture arbitrary inter-task communication. To enable the workflow system and therefore the end user to take control of recovery, we design task annotations that specify execution semantics such as nondeterminism. ExoFlow generalizes recovery for existing workflow applications ranging from ETL pipelines to stateful serverless workflows, while enabling further optimizations in task communication and recovery.more » « less
-
The demand for ‘local food’ by U.S. consumers has grown markedly over the last several decades, accompanied by confusion over how to define local food. Is ‘local’ food defined by the location of the farm, food processing factory, distribution warehouse, or all three? Is ‘local’ food defined by geographic, political, or biophysical boundaries? Is ‘local’ solely farm-to-table or can it include factories? This study evaluates food commodity flow ‘localness’ using jurisdictional boundaries and physical distance to investigate the potential for food system transformation and the tradeoffs inherent to ‘localizing’ food production. We take a supply chain approach by making data-driven distinctions between farm-based flows of food and industrial, energy and nonfood (IENF) crops, and manufacturing/distribution flows of food and agriculturally-derived industrial inputs. We analyze the diversity, distance (a proxy for environmental impact), political boundaries, population, weight, and price (net selling value) of food commodity flows. The diversity of a community's food supply has an optimal range of zero to four-hundred miles. We find tradeoffs between food system diversity and local food sourcing, sustainability, and self-sufficiency. As communities look to improve food system resilience, they will need to balance food-miles and the other values associated with local food.more » « less
-
null (Ed.)This work focuses on the optimization of performance and profitability of a wind farm carried out by means of an economic model and Reynolds-Averaged Navier-Stokes (RANS) simulations of wind turbine wakes. Axisymmetric RANS simulations of isolated wind turbine wakes are leveraged with a quadratic super-positioning model to estimate wake interactions within wind farms. The resulting velocity field is used with an actuator disk model to predict power production from each turbine in the wind farm. Design optimization is performed by considering a site in North Texas, whose wind resource statistics are obtained from a meteorological tower. The RANS solver provides capabilities to simulate different incoming wind turbulence intensities and, hence, the wind farm optimization is performed by taking the daily cycle of the atmospheric stability into account. The objective functional of the optimization problem is the levelized cost of energy (LCoE) encompassing capital cost, operation and maintenance costs, land cost and annual power production. At the first level of the optimization problem, the wind farm gross capacity is determined by considering three potential turbine types with different rated power. Subsequently, the optimal wind farm layout is estimated by varying the uniform spacing between consecutive turbine rows. It is found that increasing turbine rated power, the wind farm profitability is enhanced. Substituting a wind farm of 24 turbines of 2.3-MW rated power with 18, 3-MW turbines could reduce the LCoE of about 1.56 $/MWh, while maintaining a similar gross capacity factor. The optimization of the spacing between turbine rows was found to be sensitive to the land cost. For a land cost of 0.05 $/m2, the layout could be designed with a spacing between 6 to 15 rotor diameters without any significant effect on the LCoE, while an increased land cost of 0.1 $/m2 leads to an optimal spacing of about 6 rotor diameters.more » « less