Attosecond photoionization time delays reveal information about the potential energy landscape that an outgoing electron wavepacket probes upon ionization. In this study, we experimentally quantify the dependence of the time delay on the angular momentum of the liberated photoelectrons. For this purpose, we resolved electron quantum-path interference spectra in energy and angle using a two-color attosecond pump–probe photoionization experiment in helium. A fitting procedure of the angle-dependent interference pattern allows us to disentangle the relative phase of all four quantum pathways that are known to contribute to the final photoelectron signal. In particular, we resolve the dependence on angular momentum of the delay of one-photon transitions between continuum states, which is an essential and universal contribution to the total photoionization delay observed in attosecond pump–probe measurements. For such continuum–continuum transitions, we measure a delay between outgoing and electrons as large as 12 attoseconds, close to the ionization threshold in helium. Both single-active-electron and first-principlesab initiosimulations confirm this observation for helium and hydrogen, demonstrating the universality of the observed delays.
more »
« less
Multi-sideband interference structures by high-order photon-induced continuum-continuum transitions in helium
Following up on a previous paper on two-color photoionization of Ar(3p) [D. Bharti et al., Phys. Rev. A 103, 022834 (2021)], we present measurements and calculations for a modified three-sideband (3-SB) version of the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) configuration applied to He(1s). The 3-SB RABBITT approach allows us to explore interference effects between pathways involving different orders of transitions within the continuum. The relative differences in the retrieved oscillation phases of the three sidebands provide insights into the continuum-continuum transitions. The ground state of helium has zero orbital angular momentum, which simplifies the analysis of oscillation phases and their angle dependence within the three sidebands. We find qualitative agreement between our experimental results and the theoretical predictions for many cases but also observe some significant quantitative discrepancies.
more »
« less
- Award ID(s):
- 2110023
- PAR ID:
- 10511447
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review A
- Volume:
- 109
- Issue:
- 2
- ISSN:
- 2469-9926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose and simulate a compact (∼29.5 µm-long) nonvolatile polarization switch based on an asymmetric Sb2Se3-clad silicon photonic waveguide. The polarization state is switched between TM0and TE0mode by modifying the phase of nonvolatile Sb2Se3between amorphous and crystalline. When the Sb2Se3is amorphous, two-mode interference happens in the polarization-rotation section resulting in efficient TE0-TM0conversion. On the other hand, when the material is in the crystalline state, there is little polarization conversion because the interference between the two hybridized modes is significantly suppressed, and both TE0and TM0modes go through the device without any change. The designed polarization switch has a high polarization extinction ratio of > 20 dB and an ultra-low excess loss of < 0.22 dB in the wavelength range of 1520-1585 nm for both TE0and TM0modes.more » « less
-
In this work, we study the effect of electron doping on the kagome superconductor CsV3Sb5. Single crystals and powders of CsV3Sb5−xTexare synthesized and characterized via magnetic susceptibility, nuclear quadrupole resonance, and x-ray diffraction measurements, where we observe a slight suppression of the charge density wave transition temperature and superconducting temperature with the introduction of electron dopants. In contrast to hole doping, both transitions survive relatively unperturbed up to the solubility limit of Te within the lattice. A comparison is presented between the electronic phase diagrams of electron- and hole-tuned CsV3Sb5.more » « less
-
Abstract The class ofAV3Sb5(A=K, Rb, Cs) kagome metals hosts unconventional charge density wave states seemingly intertwined with their low temperature superconducting phases. The nature of the coupling between these two states and the potential presence of nearby, competing charge instabilities however remain open questions. This phenomenology is strikingly highlighted by the formation of two ‘domes’ in the superconducting transition temperature upon hole-doping CsV3Sb5. Here we track the evolution of charge correlations upon the suppression of long-range charge density wave order in the first dome and into the second of the hole-doped kagome superconductor CsV3Sb5−xSnx. Initially, hole-doping drives interlayer charge correlations to become short-ranged with their periodicity diminished along the interlayer direction. Beyond the peak of the first superconducting dome, the parent charge density wave state vanishes and incommensurate, quasi-1D charge correlations are stabilized in its place. These competing, unidirectional charge correlations demonstrate an inherent electronic rotational symmetry breaking in CsV3Sb5, and reveal a complex landscape of charge correlations within its electronic phase diagram. Our data suggest an inherent 2kfcharge instability and competing charge orders in theAV3Sb5class of kagome superconductors.more » « less
-
We study the path planning problem for continuum-arm robots, in which we are given a starting and an end point, and we need to compute a path for the tip of the continuum arm between the two points. We consider both cases where obstacles are present and where they are not. We demonstrate how to leverage the continuum arm features to introduce a new model that enables a path planning approach based on the configurations graph, for a continuum arm consisting of three sections, each consisting of three muscle actuators. The algorithm we apply to the configurations graph allows us to exploit parallelism in the computation to obtain efficient implementation. We conducted extensive tests, and the obtained results show the completeness of the proposed algorithm under the considered discretizations, in both cases where obstacles are present and where they are not. We compared our approach to the standard inverse kinematics approach. While the inverse kinematics approach is much faster when successful, our algorithm always succeeds in finding a path or reporting that no path exists, compared to a roughly 70% success rate of the inverse kinematics approach (when a path exists).more » « less
An official website of the United States government

