skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica
Abstract Global Navigation Satellite System (GNSS) observations and ground-based timelapse photography obtained over the record-high 2019/2020 melt season are combined to characterise the flexure and fracture behaviour of a previously formed doline on George VI Ice Shelf, Antarctica. The GNSS timeseries shows a downward vertical displacement of the doline centre with respect to the doline rim of ~60 cm in response to loading from a central meltwater lake. The GNSS data also show a tens-of-days episode of rapid-onset, exponentially decaying horizontal displacement, where the horizontal distance between the doline rim and its centre increases by ~70 cm. We interpret this event as the initiation and/or widening of a fracture, aided by stress perturbations associated with meltwater loading in the doline basin. Viscous flexure modelling indicates that the meltwater loading generates tensile surface stresses exceeding 75 kPa. This, together with our timelapse photos of circular fractures around the doline, suggests the first such documentation of meltwater-loading-induced ‘ring fracture’ formation on an ice shelf, equivalent to the fracture type proposed as part of the chain-reaction lake drainage process involved in the 2002 breakup of the Larsen B Ice Shelf.  more » « less
Award ID(s):
1841467 2213704 1841607 2213702
PAR ID:
10512866
Author(s) / Creator(s):
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Glaciology
ISSN:
0022-1430
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains all of the field data (GNSS, weather station data, timelapse camera images) used in the publication 'Banwell et al., 2024', which documents observations of surface meltwater-induced flexure and fracture at a doline on north George VI Ice Shelf, Antarctic Peninsula. 
    more » « less
  2. Abstract Ice shelves regulate ice sheet dynamics, with their stability influenced by horizontal flow and vertical flexure. MacAyeal and others (2021) developed the theoretical foundation for a coupled flow-flexure model (the “M21 model”), combining the Shallow Shelf Approximation with thin-beam flexure, providing a computationally efficient tool for studying phenomena like ice shelf rumpling and lake drainage. However, the M21 model relies on proprietary software, is unstable under compressive flow conditions, and does not incorporate fracture processes critical for capturing ice-shelf damage evolution. We present an open-source version of the M21 model addressing these limitations. Using the free Python librariesFiredrakeandicepack, we introduce a plastic failure mechanism, effectively limiting bending stresses and thereby stabilizing the model. This enhancement expands the viscous M21 model into a viscoplastic flow-flexure-fracture (3F) framework. We validate the 3F model through test cases replicating key ice shelf phenomena, including marginal rumpling and periodic surface meltwater drainage. By offering this tool as open-source software, we aim to enable broader adoption, with the ultimate aim of representing surface meltwater induced flow-flexure-fracture processes in large-scale ice sheet models. 
    more » « less
  3. Abstract Diurnal depth cycles of decimeter scale are observed in a supraglacial lake on the McMurdo Ice Shelf, Antarctica. We evaluate two possible causes: (1) tidal tilt of the ice shelf in response to the underlying ocean tide, and (2) meltwater input variation. We find the latter to be the most likely explanation of our observations. However, we do not rule out tidal tilt as a source of centimeter scale variations, and point to the possibility that other, larger supraglacial lake systems, particularly those on ice shelves that experience higher amplitude tidal tilts, such as in the Weddell Sea, may have depth cycles driven by ocean tide. The broader significance of diurnal cycles in meltwater depth is that, under circumstances where the ice shelf is thin, tidal-tilt amplitudes are high, and meltwater runoff rates are large, there may be associated flexure stresses that can contribute to ice-shelf fracture and destabilization. For the McMurdo Ice Shelf (~20–50 m thickness, ~ 1 m tidal amplitude and ~10 cm water-depth variations), these stresses amount to several 10's of kPa. 
    more » « less
  4. Abstract Surface melting and lakes are common to Antarctic ice shelves, and their existence and drainages have been invoked as a precursor for ice shelf collapse. Here, we present satellite observations over 2014–2020 of repeated, rapid drainages of a supraglacial lake at the grounding zone of Amery Ice Shelf, East Antarctica. Post‐drainage imagery in 2018 reveals lake bottom features characteristic of rapid, vertical lake drainage. Observed lake volumes indicate drainages are not associated with a threshold meltwater volume. Instead, drainages typically coincide with periods of high daily tidal amplitude, suggesting hydrofracture is assisted by tidally forced ice flexure inherent to the ice shelf grounding zone. Combined with observations of widespread grounding zone lake drainages on Amery, these findings indicate ice shelf meltwater accumulation may be inhibited by grounding zone drainage events, thus representing a potential stabilizing mechanism despite enhanced melting common to these regions. 
    more » « less
  5. Abstract We develop a two-dimensional, plan-view formulation of ice-shelf flow and viscoelastic ice-shelf flexure. This formulation combines, for the first time, the shallow-shelf approximation for horizontal ice-shelf flow (and shallow-stream approximation for flow on lubricated beds such as where ice rises and rumples form), with the treatment of a thin-plate flexure. We demonstrate the treatment by performing two finite-element simulations: one of the relict pedestalled lake features that exist on some debris-covered ice shelves due to strong heterogeneity in surface ablation, and the other of ice rumpling in the grounding zone of an ice rise. The proposed treatment opens new venues to investigate physical processes that require coupling between the longitudinal deformation and vertical flexure, for instance, the effects of surface melting and supraglacial lakes on ice shelves, interactions with the sea swell, and many others. 
    more » « less