skip to main content


This content will become publicly available on March 17, 2025

Title: Chain extension epoxide polymerization to well‐defined block polymers using a N‐Al Lewis pair catalyst
Abstract

Block polyethers comprised of poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEG or PEO) segments form the basis of ABA‐type PEO‐b‐PPO‐b‐PEO poloxamer materials. The inverse architecture with an internal hydrophilic PEO segment flanked by hydrophobic blocks can be difficult to prepare with control of architecture by use of traditional anionic polymerization. These oxyanionic polymerizations are plagued by chain‐transfer‐to‐monomer side reactions that occur with substituted epoxides such as propylene oxide (PO). Herein, we report a new method for the preparation of block polymers through a controlled polymerization involving a N‐Al Lewis adduct catalyst and an aluminum alkoxide macroinitiator. The Lewis pair catalyst was able to chain‐extend commercial PEO macroinitiators to prepare di‐, tri‐, and pentablock polyethers with low dispersity and reasonable monomer tolerance. Chain extension was confirmed using size exclusion chromatography and diffusion ordered nuclear magnetic resonance spectroscopy. The resulting block polymers were additionally analyzed with small‐angle X‐ray scattering to correlate the morphology to molecular architecture.

 
more » « less
Award ID(s):
2308817
NSF-PAR ID:
10513063
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
62
Issue:
11
ISSN:
2642-4150
Format(s):
Medium: X Size: p. 2527-2538
Size(s):
["p. 2527-2538"]
Sponsoring Org:
National Science Foundation
More Like this
  1. The interaction in aqueous solutions of surfactants with amphiphilic polymers can be more complex than the surfactant interactions with homopolymers. Interactions between the common ionic surfactant sodium dodecyl sulfate (SDS) and nonionic amphiphilic polymers of the poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO-PPO-PEO) type have been probed utilizing a variety of experimental techniques. The polymer amphiphiles studied here are Pluronic F127 (EO100PO65EO100) and Pluronic P123 (EO19PO69EO19), having the same length PPO block but different length PEO blocks and, accordingly, very different critical micellization concentrations (CMC). With increasing surfactant concentration in aqueous solutions of fixed polymer content, SDS interacts with unassociated PEO-PPO-PEO molecules to first form SDS-rich SDS/Pluronic assemblies and then free SDS micelles. SDS interacts with micellized PEO-PPO-PEO to form Pluronic-rich SDS/Pluronic assemblies, which upon further increase in surfactant concentration, break down and transition into SDS-rich SDS/Pluronic assemblies, followed by free SDS micelle formation. The SDS-rich SDS/Pluronic assemblies exhibit polyelectrolyte characteristics. The interactions and mode of association between nonionic macromolecular amphiphiles and short-chain ionic amphiphiles are affected by the polymer hydrophobicity and its concentration in the aqueous solution. For example, SDS binds to Pluronic F127 micelles at much lower concentrations (~0.01 mM) when compared to Pluronic P123 micelles (~1 mM). The critical association concentration (CAC) values of SDS in aqueous PEO-PPO-PEO solutions are much lower than CAC in aqueous PEO homopolymer solutions. 
    more » « less
  2. Abstract

    Polymer‐grafted inorganic particles (PGIPs) are attractive building blocks for numerous chemical and material applications. Surface‐initiated controlled radical polymerization (SI‐CRP) is the most feasible method to fabricate PGIPs. However, a conventional in‐batch reaction still suffers from several disadvantages, including time‐consuming purification processes, low grafting efficiency, and possible gelation problems. Herein, a facile method is demonstrated to synthesize block copolymer–grafted inorganic particles, that is, poly(poly(ethylene glycol) methyl ether methacrylate) (PPEGMEMA)‐b‐poly(N‐isopropylacrylamide) (PNIPAM)–grafted silica micro‐particles using continuous flow chemistry in an environmentally friendly aqueous media. Immobilizing the chain transfer agent and subsequent SI‐CRP can be accomplished sequentially in a continuous flow system, avoiding multi‐step purification processes in between. The chain length (MW) of the grafted polymers is tunable by adjusting the flow time or monomer concentration, and the narrower molar mass dispersity (Р< 1.4) of the grafted polymers reveals the uniform polymer chains on the particles. Moreover, compared with the in‐batch reaction at the same condition, the continuous system also suppresses possible gelation problems.

     
    more » « less
  3. Rationale

    Simple, affordable, and rapid methods for identifying the molecular weight (MW) distribution and macromolecular composition of polymeric materials are limited. Current tools require extensive solvent consumption, linear calibrations, and expensive consumables. A simple method for the determination of average MW (Mn,Mw) and chain end groups is demonstrated for synthetic homopolymer standards using direct injection electrospray ionization‐mass spectrometry (ESI‐MS) and an open‐sourced charge deconvolution (CDC) algorithm.

    Methods

    Five homopolymer standards in the 1–7 kDa MW range were analyzed using direct‐injection ESI‐MS on a quadrupole/time‐of‐flight mass spectrometer. The samples investigated, viz. two poly(ethylene oxide) (PEO) and two poly(styrene sulfonic acid) (PSS) standards with narrow polydispersity and one poly(d,l‐alanine) (pAla) standard with undefined polydispersity, were chosen to illustrate challenges with ESI‐MS quantitation. Using the UniDec program, weight average MWs (Mw) obtained from the charge‐deconvoluted spectra were compared to the reportedMwdata of the standards from size exclusion chromatography (SEC) measurements.

    Results

    The MW data derived for the PSS, PEO, and pAla standards agreed well with the corresponding reportedMwor MW range values. The method was able to provide MW, degree of polymerization (DP), and polydispersity index (PDI) information for polymers with narrow (PSS, PEO) as well as broader (pAla) molecular weight distribution; this feature provides an advantage over MW analysis via matrix‐assisted laser desorption/ionization (MALDI) for ESI‐compatible materials. PSS standards differing in average MW by only a few repeat units could be confidently distinguished. Additionally, the oligomeric resolution observed for all samples studied unveiled chain‐end information not available through chromatographic analysis.

    Conclusions

    Overall, the free and easy‐to‐use UniDec CDC algorithm provides a simple, alternative method to measuring MW and DP for polymeric materials without high solvent consumption, expensive ionization sources, or calibration curves. Information about the masses of individual oligomers and the possibility to further characterize these oligomers using tandem mass spectrometry and/or ion mobility techniques constitutes additional benefits of this approach vis‐à‐vis traditional MW and PDI elucidation through SEC.

     
    more » « less
  4. Abstract

    Polymerization‐induced self‐assembly (PISA) has emerged as a scalable one‐pot technique to prepare block copolymer (BCP) nanoparticles. Recently, a PISA process, that results in poly(l‐lactide)‐b‐poly(ethylene glycol) BCP nanoparticles coined ring‐opening polymerization (ROP)‐induced crystallization‐driven self‐assembly (ROPI‐CDSA), was developed. The resulting nanorods demonstrate a strong propensity for aggregation, resulting in the formation of 2D sheets and 3D networks. This article reports the synthesis of poly(N,N‐dimethyl acrylamide)‐b‐poly(l)‐lactide BCP nanoparticles by ROPI‐CDSA, utilizing a two‐step, one‐pot approach. A dual‐functionalized photoiniferter is first used for controlled radical polymerization of the acrylamido‐based monomer, and the resulting polymer serves as a macroinitiator for organocatalyzed ROP to form the solvophobic polyester block. The resulting nanorods are highly stable and display anisotropy at higher molecular weights (>12k Da) and concentrations (>20% solids) than the previous report. This development expands the chemical scope of ROPI‐CDSA BCPs and provides readily accessible nanorods made with biocompatible materials.

     
    more » « less
  5. Abstract

    Helical poly(isocyanide)s are an important class of synthetic polymers possessing a static helical structure. Since their initial discovery, numerous examples of these helices have been fabricated. In this contribution, the synthesis of a chiral, azobenzene (azo)‐containing isocyanide monomer is reported. Upon polymerization with nickel(II) catalysts, a well‐defined circular dichroism (CD) trace is obtained, corresponding to the formation of a right‐handed polymeric helix. The helical polymer, dissolved in chloroform and irradiated with UV light (365 nm), undergoes acistotransisomerization of the azobenzene side‐chains. After the isomerization, a change in conformation of the helix occurs, as evidenced by CD spectroscopy. When the solution is irradiated with LED light, the polymer returns to a right‐handed helical conformation. To open up the possibility for chain‐end post‐polymerization modification of this light‐responsive system, an alkyne‐functionalized nickel(II) catalyst is also used in the polymerization of the azobenzene monomer, resulting in a stimuli‐responsive, terminal‐alkyne‐containing helical poly(isocyanide).

     
    more » « less