skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clustering and visualization of single-cell RNA-seq data using path metrics
Recent advances in single-cell technologies have enabled high-resolution characterization of tissue and cancer compositions. Although numerous tools for dimension reduction and clustering are available for single-cell data analyses, these methods often fail to simultaneously preserve local cluster structure and global data geometry. To address these challenges, we developed a novel analyses framework,Single-CellPathMetricsProfiling (scPMP), using power-weighted path metrics, which measure distances between cells in a data-driven way. Unlike Euclidean distance and other commonly used distance metrics, path metrics are density sensitive and respect the underlying data geometry. By combining path metrics with multidimensional scaling, a low dimensional embedding of the data is obtained which preserves both the global data geometry and cluster structure. We evaluate the method both for clustering quality and geometric fidelity, and it outperforms current scRNAseq clustering algorithms on a wide range of benchmarking data sets.  more » « less
Award ID(s):
2136198 2309570
PAR ID:
10516886
Author(s) / Creator(s):
; ;
Editor(s):
Zhang, Shihua
Publisher / Repository:
PLoS
Date Published:
Journal Name:
PLOS Computational Biology
Volume:
20
Issue:
5
ISSN:
1553-7358
Page Range / eLocation ID:
e1012014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Classical multidimensional scaling is a widely used dimension reduction technique. Yet few theoretical results characterizing its statistical performance exist. This paper provides a theoretical framework for analyzing the quality of embedded samples produced by classical multidimensional scaling. This lays a foundation for various downstream statistical analyses, and we focus on clustering noisy data. Our results provide scaling conditions on the signal-to-noise ratio under which classical multidimensional scaling followed by a distance-based clustering algorithm can recover the cluster labels of all samples. Simulation studies confirm these scaling conditions are sharp. Applications to the cancer gene-expression data, the single-cell RNA sequencing data and the natural language data lend strong support to the methodology and theory. 
    more » « less
  2. Abstract Principal Component Analysis (PCA) has long been a cornerstone in dimensionality reduction for high-dimensional data, including single-cell RNA sequencing (scRNA-seq). However, PCA’s performance typically degrades with increasing data size, can be sensitive to outliers, and assumes linearity. Recently, Random Projection (RP) methods have emerged as promising alternatives, addressing some of these limitations. This study systematically and comprehensively evaluates PCA and RP approaches, including Singular Value Decomposition (SVD) and randomized SVD, alongside Sparse and Gaussian Random Projection algorithms, with a focus on computational efficiency and downstream analysis effectiveness. We benchmark performance using multiple scRNA-seq datasets including labeled and unlabeled publicly available datasets. We apply Hierarchical Clustering and Spherical K-Means clustering algorithms to assess downstream clustering quality. For labeled datasets, clustering accuracy is measured using the Hungarian algorithm and Mutual Information. For unlabeled datasets, the Dunn Index and Gap Statistic capture cluster separation. Across both dataset types, the Within-Cluster Sum of Squares (WCSS) metric is used to assess variability. Additionally, locality preservation is examined, with RP outperforming PCA in several of the evaluated metrics. Our results demonstrate that RP not only surpasses PCA in computational speed but also rivals and, in some cases, exceeds PCA in preserving data variability and clustering quality. By providing a thorough benchmarking of PCA and RP methods, this work offers valuable insights into selecting optimal dimensionality reduction techniques, balancing computational performance, scalability, and the quality of downstream analyses. 
    more » « less
  3. Zhang, Shihua (Ed.)
    Among existing computational algorithms for single-cell RNA-seq analysis, clustering and trajectory inference are two major types of analysis that are routinely applied. For a given dataset, clustering and trajectory inference can generate vastly different visualizations that lead to very different interpretations of the data. To address this issue, we propose multiple scores to quantify the “clusterness” and “trajectoriness” of single-cell RNA-seq data, in other words, whether the data looks like a collection of distinct clusters or a continuum of progression trajectory. The scores we introduce are based on pairwise distance distribution, persistent homology, vector magnitude, Ripley’s K, and degrees of connectivity. Using simulated datasets, we demonstrate that the proposed scores are able to effectively differentiate between cluster-like data and trajectory-like data. Using real single-cell RNA-seq datasets, we demonstrate the scores can serve as indicators of whether clustering analysis or trajectory inference is a more appropriate choice for biological interpretation of the data. 
    more » « less
  4. Summary A standard unsupervised analysis is to cluster observations into discrete groups using a dissimilarity measure, such as Euclidean distance. If there does not exist a ground-truth label for each observation necessary for external validity metrics, then internal validity metrics, such as the tightness or separation of the clusters, are often used. However, the interpretation of these internal metrics can be problematic when using different dissimilarity measures as they have different magnitudes and ranges of values that they span. To address this problem, previous work introduced the “scale-agnostic” $$G_{+}$$ discordance metric; however, this internal metric is slow to calculate for large data. Furthermore, in the setting of unsupervised clustering with $$k$$ groups, we show that $$G_{+}$$ varies as a function of the proportion of observations assigned to each of the groups (or clusters), referred to as the group balance, which is an undesirable property. To address this problem, we propose a modification of $$G_{+}$$, referred to as $$H_{+}$$, and demonstrate that $$H_{+}$$ does not vary as a function of group balance using a simulation study and with public single-cell RNA-sequencing data. Finally, we provide scalable approaches to estimate $$H_{+}$$, which are available in the $$\mathtt{fasthplus}$$ R package. 
    more » « less
  5. Mathelier, Anthony (Ed.)
    Abstract Motivation Recent breakthroughs of single-cell RNA sequencing (scRNA-seq) technologies offer an exciting opportunity to identify heterogeneous cell types in complex tissues. However, the unavoidable biological noise and technical artifacts in scRNA-seq data as well as the high dimensionality of expression vectors make the problem highly challenging. Consequently, although numerous tools have been developed, their accuracy remains to be improved. Results Here, we introduce a novel clustering algorithm and tool RCSL (Rank Constrained Similarity Learning) to accurately identify various cell types using scRNA-seq data from a complex tissue. RCSL considers both local similarity and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger differences among cells of different types. RCSL uses Spearman’s rank correlations of a cell’s expression vector with those of other cells to measure its global similarity, and adaptively learns neighbor representation of a cell as its local similarity. The overall similarity of a cell to other cells is a linear combination of its global similarity and local similarity. RCSL automatically estimates the number of cell types defined in the similarity matrix, and identifies them by constructing a block-diagonal matrix, such that its distance to the similarity matrix is minimized. Each block-diagonal submatrix is a cell cluster/type, corresponding to a connected component in the cognate similarity graph. When tested on 16 benchmark scRNA-seq datasets in which the cell types are well-annotated, RCSL substantially outperformed six state-of-the-art methods in accuracy and robustness as measured by three metrics. Availability and implementation The RCSL algorithm is implemented in R and can be freely downloaded at https://cran.r-project.org/web/packages/RCSL/index.html. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less