skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: spAbundance: An R package for single‐species and multi‐species spatially explicit abundance models
Abstract Numerous modelling techniques exist to estimate abundance of plant and animal populations. The most accurate methods account for multiple complexities found in ecological data, such as observational biases, spatial autocorrelation, and species correlations. There is, however, a lack of user‐friendly and computationally efficient software to implement the various models, particularly for large data sets.We developed thespAbundance Rpackage for fitting spatially explicit Bayesian single‐species and multi‐species hierarchical distance sampling models, N‐mixture models, and generalized linear mixed models. The models within the package can account for spatial autocorrelation using Nearest Neighbour Gaussian Processes and accommodate species correlations in multi‐species models using a latent factor approach, which enables model fitting for data sets with large numbers of sites and/or species.We provide three vignettes and three case studies that highlightspAbundancefunctionality. We used spatially explicit multi‐species distance sampling models to estimate density of 16 bird species in Florida, USA, an N‐mixture model to estimate black‐throated blue warbler (Setophaga caerulescens) abundance in New Hampshire, USA, and a spatial linear mixed model to estimate forest above‐ground biomass across the continental USA.spAbundanceprovides a user‐friendly, formula‐based interface to fit a variety of univariate and multivariate spatially explicit abundance models. The package serves as a useful tool for ecologists and conservation practitioners to generate improved inference and predictions on the spatial drivers of abundance in populations and communities.  more » « less
Award ID(s):
1954406 2213565
PAR ID:
10518984
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
15
Issue:
6
ISSN:
2041-210X
Page Range / eLocation ID:
1024 to 1033
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Projects focused on movement behaviour and home range are commonplace, but beyond a focus on choosing appropriate research questions, there are no clear guidelines for such studies. Without these guidelines, designing an animal tracking study to produce reliable estimates of space‐use and movement properties (necessary to answer basic movement ecology questions), is often done in an ad hoc manner.We developed ‘movedesign’, a user‐friendly Shiny application, which can be utilized to investigate the precision of three estimates regularly reported in movement and spatial ecology studies: home range area, speed and distance travelled. Conceptually similar to statistical power analysis, this application enables users to assess the degree of estimate precision that may be achieved with a given sampling design; that is, the choices regarding data resolution (sampling interval) and battery life (sampling duration).Leveraging the ‘ctmm’Rpackage, we utilize two methods proven to handle many common biases in animal movement datasets: autocorrelated kernel density estimators (AKDEs) and continuous‐time speed and distance (CTSD) estimators. Longer sampling durations are required to reliably estimate home range areas via the detection of a sufficient number of home range crossings. In contrast, speed and distance estimation requires a sampling interval short enough to ensure that a statistically significant signature of the animal's velocity remains in the data.This application addresses key challenges faced by researchers when designing tracking studies, including the trade‐off between long battery life and high resolution of GPS locations collected by the devices, which may result in a compromise between reliably estimating home range or speed and distance. ‘movedesign’ has broad applications for researchers and decision‐makers, supporting them to focus efforts and resources in achieving the optimal sampling design strategy for their research questions, prioritizing the correct deployment decisions for insightful and reliable outputs, while understanding the trade‐off associated with these choices. 
    more » « less
  2. Determining the spatial distributions of species and communities is a key task in ecology and conservation efforts. Joint species distribution models are a fundamental tool in community ecology that use multi‐species detection–nondetection data to estimate species distributions and biodiversity metrics. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While many methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi‐species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., >100) and spatial locations (e.g., 100,000). We compared the proposed model performance to five alternative models, each addressing a subset of the three complexities. We implemented the proposed and alternative models in thespOccupancysoftware, designed to facilitate application via an accessible, well documented, and open‐source R package. Using simulations, we found that ignoring the three complexities when present leads to inferior model predictive performance, and the impacts of failing to account for one or more complexities will depend on the objectives of a given study. Using a case study on 98 bird species across the continental US, the spatial factor multi‐species occupancy model had the highest predictive performance among the alternative models. Our proposed framework, together with its implementation inspOccupancy, serves as a user‐friendly tool to understand spatial variation in species distributions and biodiversity while addressing common complexities in multi‐species detection–nondetection data. 
    more » « less
  3. Abstract A prominent challenge for managing migratory species is the development of conservation plans that accommodate spatiotemporally varying distributions throughout the year. Migratory networks are spatially‐explicit models that incorporate migratory assignment and seasonal abundance data to define patterns of connectivity between stages of the annual cycle. These models are particularly useful for widespread application because different types of migratory data can be used to quantify individual and population‐level movement across the annual cycle of migratory species. While there are clear benefits of combining migratory assignment and abundance data for the development of conservation strategies, there is a concurrent need for corresponding user‐friendly software to facilitate the integration of these data for conservation.Here, we presentmignette(migratory network tools ensemble), an R package for developing migratory network models to estimate network connectivity among migratory populations. We demonstrate the functionality ofmignettewith three empirical examples that highlight the use of different types of tracking data for migratory assignment.mignettefacilitates the modelling of migratory networks by providing R functions to: (1) define breeding and nonbreeding nodes, (2) assemble abundance and assignment data and (3) model the migratory network. Additionally,mignetteprovides R functions to visualize modelled migratory networks.With increasing availability of migratory assignment and abundance data,mignetterepresents a valuable tool for developing effective conservation strategies for migratory species. 
    more » « less
  4. Abstract Collective motion, that is the coordinated spatial and temporal organisation of individuals, is a core element in the study of collective animal behaviour. The self‐organised properties of how a group moves influence its various behavioural and ecological processes, such as predator–prey dynamics, social foraging and migration. However, little is known about the inter‐ and intra‐specific variation in collective motion. Despite the significant advancement in high‐resolution tracking of multiple individuals within groups, providing collective motion data for animals in the laboratory and the field, a framework to perform quantitative comparisons across species and contexts is lacking.Here, we present theswaRmversepackage. Building on two existing R packages,trackdfandswaRm,swaRmverseenables the identification and analysis of collective motion ‘events’, as presented in Papadopoulou et al. (2023), creating a unit of comparison across datasets. We describe the package's structure and showcase its functionality using existing datasets from several species and simulated trajectories from an agent‐based model.From positional time‐series data for multiple individuals (x‐y‐t‐id),swaRmverseidentifies events of collective motion based on the distribution of polarisation and group speed. For each event, a suite of validated biologically meaningful metrics are calculated, and events are placed into a ‘swarm space’ through dimensional reduction techniques.Our package provides the first automated pipeline enabling the analysis of data on collective behaviour. The package allows the calculation and use of complex metrics for users without a strong quantitative background and will promote communication and data‐sharing across disciplines, standardising the quantification of collective motion across species and promoting comparative investigations. 
    more » « less
  5. Abstract Gene flow is increasingly recognized as an important macroevolutionary process. The many mechanisms that contribute to gene flow (e.g. introgression, hybridization, lateral gene transfer) uniquely affect the diversification of dynamics of species, making it important to be able to account for these idiosyncrasies when constructing phylogenetic models. Existing phylogenetic‐network simulators for macroevolution are limited in the ways they model gene flow.We presentSiPhyNetwork, an R package for simulating phylogenetic networks under a birth–death‐hybridization process.Our package unifies the existing birth–death‐hybridization models while also extending the toolkit for modelling gene flow. This tool can create patterns of reticulation such as hybridization, lateral gene transfer, and introgression.Specifically, we model different reticulate events by allowing events to either add, remove or keep constant the number of lineages. Additionally, we allow reticulation events to be trait dependent, creating the ability to model the expanse of isolating mechanisms that prevent gene flow. This tool makes it possible for researchers to model many of the complex biological factors associated with gene flow in a phylogenetic context. 
    more » « less