We report on a method for determining the absolute nuclear charge radius of high- elements using extreme-ultraviolet spectroscopy of highly charged Na-like ions in tandem with highly accurate atomic structure calculations of transition energy differences. The application of this method has reduced the nuclear charge radius uncertainty of by a factor of 8 from the currently accepted literature value, with a recently reported charge radius of 5.435(12) fm. The result reduces the charge radius uncertainty along the full Ir isotopic chain when combined with prior optical isotope shift measurements. The technique utilizes only a few million ions stored in an ion trap, which should apply to measurements with small quantities of radioactive nuclei. Published by the American Physical Society2025 
                        more » 
                        « less   
                    
                            
                            Multimessenger measurements of the static structure of shock-compressed liquid silicon at 100 GPa
                        
                    
    
            The ionic structure of high-pressure, high-temperature fluids is a challenging theoretical problem with applications to planetary interiors and fusion capsules. Here we report a multimessenger platform using velocimetry and angularly and spectrally resolved x-ray scattering to measure the thermodynamic conditions and ion structure factor of materials at extreme pressures. We document the pressure, density, and temperature of shocked silicon near with uncertainties of 6%, 2%, and 20%, respectively. The measurements are sufficient to distinguish between and rule out some ion screening models. Published by the American Physical Society2024 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10519308
- Publisher / Repository:
- aps.org
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present results for the and 1-jettiness global event shape distributions, for deep inelastic scattering (DIS), at the level of accuracy. These event-shape distributions quantify and characterize the pattern of final state radiation in electron-nucleus collisions. They can be used as a probe of nuclear structure functions, as nuclear medium effects in jet production, and for a precision extraction of the QCD strong coupling. The results presented here, along with the corresponding numerical codes, can be used for analyses with HERA data, in Electron-Ion Collider (EIC) simulation studies, and for eventual comparison with real EIC data. Published by the American Physical Society2024more » « less
- 
            We present a detailed x-ray magnetic circular dichroism (XMCD) study of the magnetic properties of Gd-doped EuO thin films, synthesized via molecular-beam epitaxy with Gd doping levels up to over 12%. The impact of Gd doping on the electronic and magnetic behavior of EuO is studied using XMCD and magnetometry. Gd doping significantly enhances the Curie temperature ( ) from 69 K in undoped EuO to over 120 K, driven by increased carrier density, while preserving the high quality of the single-crystalline films. At higher doping levels, a plateau in is observed, which is attributed to the formation of Eu-Gd nearest-neighbor pairs that limit dopant activation. We also observe a distinctive “double-dome” structure in the temperature-dependent magnetization, which we attribute to both the ferromagnetic ordering of Eu moments at lower temperatures and the influence of conduction electrons via exchange interactions at higher temperatures. These findings provide key insights into the mechanisms of carrier-induced magnetic transitions. Published by the American Physical Society2025more » « less
- 
            We report the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on natural germanium, measured at the Spallation Neutron Source at Oak Ridge National Laboratory. The Ge-Mini detector of the COHERENT collaboration employs large-mass, low-noise, high-purity germanium spectrometers, enabling excellent energy resolution, and an analysis threshold of 1.5 keV electron-equivalent ionization energy. We observe an on-beam excess of counts with a total exposure of 10.22 GWhkg, and we reject the no-CEvNS hypothesis with significance. The result agrees with the predicted standard model of particle physics signal rate within . Published by the American Physical Society2025more » « less
- 
            We use one-photon excitation to promote -shell electrons of formic acid (which has a planar equilibrium structure) to an antibonding orbital. The excited molecule is known to have a (chiral) pyramidal equilibrium structure. In our experiment, we determine the handedness of the excited molecule by imaging the momenta of charged fragments, which occur after its Coulomb explosion triggered by Auger-Meitner decay cascades succeeding the excitation. We find that the handedness of the excited molecule depends on its spatial orientation with respect to the propagation (or polarization) direction of the exciting photon. The effect is largely independent of the exact polarization properties of the light driving the excitation. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    