Abstract The relationship between biodiversity and stability, or its inverse, temporal variability, is multidimensional and complex. Temporal variability in aggregate properties, like total biomass or abundance, is typically lower in communities with higher species diversity (i.e., the diversity–stability relationship [DSR]). At broader spatial extents, regional‐scale aggregate variability is also lower with higher regional diversity (in plant systems) and with lower spatial synchrony. However, focusing exclusively on aggregate properties of communities may overlook potentially destabilizing compositional shifts. It is not yet clear how diversity is related to different components of variability across spatial scales, nor whether regional DSRs emerge across a broad range of organisms and ecosystem types. To test these questions, we compiled a large collection of long‐term metacommunity data spanning a wide range of taxonomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types (e.g., deserts, forests, oceans). We applied a newly developed quantitative framework for jointly analyzing aggregate and compositional variability across scales. We quantified DSRs for composition and aggregate variability in local communities and metacommunities. At the local scale, more diverse communities were less variable, but this effect was stronger for aggregate than compositional properties. We found no stabilizing effect of γ‐diversity on metacommunity variability, but β‐diversity played a strong role in reducing compositional spatial synchrony, which reduced regional variability. Spatial synchrony differed among taxa, suggesting differences in stabilization by spatial processes. However, metacommunity variability was more strongly driven by local variability than by spatial synchrony. Across a broader range of taxa, our results suggest that high γ‐diversity does not consistently stabilize aggregate properties at regional scales without sufficient spatial β‐diversity to reduce spatial synchrony.
more »
« less
Temporal variability in the relationship between line height absorption and chlorophyll concentration: a case study from the Northern Gulf of Alaska
The Line Height Absorption (LHA) method uses absorption of light to estimate chlorophyll-a. While most users consider regional variability and apply corrections, the effect of temporal variability is typically not explored. The Northern Gulf of Alaska (NGA) was selected for this study because there was no published regional value and its large swings in temporal productivity would make it a good candidate to evaluate the effect of temporal variability on the relationship. The mean NGA value of 0.0114 obtained here should be treated with caution, as variation in the slope of the relationship (aLH*), and thus chlorophyll-a estimates, in the NGA region varied by ∼25% between spring (aLH* = 0.0109) and summer (aLH* = 0.0137). Results suggest that this change is driven by a shift in pigment packaging and cell size associated with changes in mixed layer depth and stratification. Consideration of how temporal variability may affect the accuracy of the LHA method in other regions is thus recommended.
more »
« less
- PAR ID:
- 10519468
- Publisher / Repository:
- Optica Publishing Group
- Date Published:
- Journal Name:
- Optics Express
- Edition / Version:
- 1
- Volume:
- 32
- Issue:
- 12
- ISSN:
- 1094-4087
- Page Range / eLocation ID:
- 20491
- Subject(s) / Keyword(s):
- Chlorophyll, absorption, production
- Format(s):
- Medium: X Other: pdf
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The global air‐sea CO2flux (F) impacts and is impacted by a plethora of climate‐related processes operating at multiple time scales. In bulk mass transfer formulations, F is driven by physico‐ and bio‐chemical factors such as the air‐sea partial pressure difference (∆pCO2), gas transfer velocity, sea surface temperature, and salinity–all varying at multiple time scales. To de‐convolve the impact of these factors on variability in F at different time scales, time‐resolved estimates of F were computed using a global data set assembled between 1988 and 2015. The F anomalies were defined as temporal deviations from the 28‐year time‐averaged value. Spectral analysis revealed four dominant timescales of variability in F–subseasonal, seasonal, interannual, and decadal with relative amplitude differences varying across regions. A second‐order Taylor series expansion was then conducted along these four timescales to separate drivers across differing regions. The analysis showed that on subseasonal timescales, wind speed variability explains some 66% of the global F anomaly and is the dominant driver. On seasonal, interannual, and decadal timescales, the ∆pCO2effect controlled by the ∆pCO2anomaly, explained much of the F anomaly. On decadal timescales, the F anomaly was almost entirely governed by the ∆pCO2effect with large contributions from high latitudes. The main drivers across timescales also dominate the regional F anomaly, particularly in the mid‐high latitude regions. Finally, the driver of the ∆pCO2effect was closely connected with the relative strength of atmospheric pCO2and the nonthermal component of oceanic pCO2anomaly associated with dissolved inorganic carbon and alkalinity.more » « less
-
Abstract. Snow algae contribute to snowmelt by darkening the surface, reducing its albedo. However, the potential consequences of algae under the surface (such as after a fresh snowfall) on albedo reduction is not known. In this study, we examined the impact of sub-surface snow algae on surface energy absorption. The results indicate energy absorption across all analysed wavelength ranges when snow algae are snow-covered, an effect that was correlated with both cell densities and chlorophyll-a concentrations. These findings suggest that snow algae lower albedo and thus increase snow melt even when snow-covered.more » « less
-
Abstract. We assessed the influence of the marine diazotrophic cyanobacterium Trichodesmium on the bio-optical properties of western tropical South Pacific (WTSP) waters (18–22°S, 160°E–160°W) during the February–March 2015 OUTPACE cruise. We performed measurements of backscattering and absorption coefficients, irradiance, and radiance in the euphotic zone with a Satlantic MicroPro free-fall profiler and took Underwater Vision Profiler 5 (UPV5) pictures for counting the largest Trichodesmium spp. colonies. Pigment concentrations were determined by fluorimetry and high-performance liquid chromatography and picoplankton abundance by flow cytometry. Trichome concentration was estimated from pigment algorithms and validated by surface visual counts. The abundance of large colonies counted by the UVP5 (maximum 7093coloniesm−3) was well correlated to the trichome concentrations (maximum 2093trichomesL−1) with an aggregation factor of 600. In the Melanesian archipelago, a maximum of 4715trichomesL−1 was enumerated in pump samples (3.2m) at 20°S,16730°E. High Trichodesmium abundance was always associated with absorption peaks of mycosporine-like amino acids (330, 360nm) and high particulate backscattering, but not with high Chl a fluorescence or blue particulate absorption (440nm). Along the west-to-east transect, Trichodesmium together with Prochlorococcus represented the major part of total chlorophyll concentration; the contribution of other groups were relatively small or negligible. The Trichodesmium contribution to total chlorophyll concentration was the highest in the Melanesian archipelago around New Caledonia and Vanuatu (60%), progressively decreased to the vicinity of the islands of Fiji (30%), and reached a minimum in the South Pacific Gyre where Prochlorococcus dominated chlorophyll concentration. The contribution of Trichodesmium to zeaxanthin was respectively 50, 40 and 20% for these regions. During the OUTPACE cruise, the relationship between normalized water-leaving radiance (nLw) in the ultraviolet and visible and chlorophyll concentration was similar to that found during the BIOSOPE cruise in the eastern tropical Pacific. Principal component analysis (PCA) of OUTPACE data showed that nLw at 305, 325, 340, 380, 412 and 440nm was strongly correlated to chlorophyll and zeaxanthin, while nLw at 490 and 565nm exhibited lower correlations. These results, as well as differences in the PCA of BIOSOPE data, indicated that nLw variability in the greenish blue and yellowish green during OUTPACE was influenced by other variables associated with Trichodesmium presence, such as backscattering coefficient, phycoerythrin fluorescence and/or zeaxanthin absorption, suggesting that Trichodesmium detection should involve examination of nLw in this spectral domain.more » « less
-
Abstract A 25‐year (1996–2020) hindcast from a coupled physical‐biogeochemical model is evaluated with nutrients, phytoplankton and zooplankton field data and is analyzed to identify mechanisms controlling seasonal and interannual variability of the northern Gulf of Alaska (NGA) planktonic food web. Characterized by a mosaic of processes, the NGA is a biologically complex and productive marine ecosystem. Empirical Orthogonal Function (EOF) analysis combining abiotic and biotic variables averaged over the continental shelf reveals that light intensity is a main driver for nanophytoplankton variability during spring, and that nitrate availability is a main driver for diatoms during spring and for both phytoplankton during summer. Zooplankton variability is a combination of carry‐over effects from the previous year and bottom‐up controls from the current year, with copepods and euphausiids responding to diatoms and microzooplankton responding to nanophytoplankton. The results also demonstrate the effect of nitrate availability and phytoplankton community structure on changes in biomass and energy transfers across the planktonic food web over the entire growing season. In particular, the biomass of large copepods and euphausiids increases more significantly during years of higher relative diatom abundance, as opposed to years with higher nitrate availability. Large microzooplankton was identified as the planktonic group most sensitive to perturbations, presumably due to its central position in the food web. By quantifying the combined variability of several key planktonic functional groups over a 25‐year period, this work lays the foundation for an improved understanding of the long‐term impacts of climate change on the NGA shelf.more » « less
An official website of the United States government

