We initiate a systematic analysis of moduli spaces of vacua of four dimensional =3 SCFTs. Our analysis is based on the one hand on the properties of =3 chiral rings --- which we review in detail and contrast with chiral rings of theories with less supersymmetry --- and on the other hand on constraints coming from low-energy supersymmetry. This leads us to introduce a new type of geometric structure, which characterizes =3 SCFT moduli spaces, and that we call triple special Kähler (TSK). A rank-n TSK moduli space has complex dimension 3n, and is singular at complex co-dimension 3 subspaces where charged states become massless. The structure of singularities defines a stratification of the TSK space in terms of lower-dimensional TSK manifolds.
more »
« less
THE BOUNDARY OF THE p -RANK STRATUM OF THE MODULI SPACE OF CYCLIC COVERS OF THE PROJECTIVE LINE
Abstract. We study the p-rank stratification of the moduli space of cyclic degree ! covers of the projective line in characteristic p for distinct primes p and !. The main result is about the intersection of the p-rank 0 stratum with the boundary of the moduli space of curves. When ! = 3 and p ≡ 2 mod 3 is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type (r,s), and p-rank f satisfying the clear necessary conditions.
more »
« less
- Award ID(s):
- 2200418
- PAR ID:
- 10520606
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Nagoya Mathematical Journal
- Volume:
- 248
- ISSN:
- 0027-7630
- Page Range / eLocation ID:
- 865 to 887
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The tensor rank and border rank of the $$3 \times 3$$ determinant tensor are known to be $$5$$ if the characteristic is not two. In characteristic two, the existing proofs of both the upper and lower bounds fail. In this paper, we show that the tensor rank remains $$5$$ for fields of characteristic two as well.more » « less
-
We calculate the category of D D -modules on the loop space of the affine line in coherent terms. Specifically, we find that this category is derived equivalent to the category of ind-coherent sheaves on the moduli space of rank one de Rham local systems with a flat section. Our result establishes a conjecture coming out of the 3 d 3d mirror symmetry program, which obtains new compatibilities for the geometric Langlands program from rich dualities of QFTs that are themselves obtained from string theory conjectures.more » « less
-
Abstract Projective duality identifies the moduli spaces $$\textbf{B}_n$$ and $$\textbf{X}(3,n)$$ parametrizing linearly general configurations of $$n$$ points in $$\mathbb{P}^2$$ and $$n$$ lines in the dual $$\mathbb{P}^2$$, respectively. The space $$\textbf{X}(3,n)$$ admits Kapranov’s Chow quotient compactification $$\overline{\textbf{X}}(3,n)$$, studied also by Lafforgue, Hacking, Keel, Tevelev, and Alexeev, which gives an example of a KSBA moduli space of stable surfaces: it carries a family of certain reducible degenerations of $$\mathbb{P}^2$$ with $$n$$ “broken lines”. Gerritzen and Piwek proposed a dual perspective, a compact moduli space parametrizing certain reducible degenerations of $$\mathbb{P}^2$$ with $$n$$ smooth points. We investigate the relation between these approaches, answering a question of Kapranov from 2003.more » « less
-
Abstract We show that the K-moduli spaces of log Fano pairs $$({\mathbb {P}}^3, cS)$$ ( P 3 , c S ) where S is a quartic surface interpolate between the GIT moduli space of quartic surfaces and the Baily–Borel compactification of moduli of quartic K3 surfaces as c varies in the interval (0, 1). We completely describe the wall crossings of these K-moduli spaces. As the main application, we verify Laza–O’Grady’s prediction on the Hassett–Keel–Looijenga program for quartic K3 surfaces. We also obtain the K-moduli compactification of quartic double solids, and classify all Gorenstein canonical Fano degenerations of $${\mathbb {P}}^3$$ P 3 .more » « less
An official website of the United States government

