Regional scale assessments of future chronic coastal hazard impacts are critical tools for adaptation planning under a changing climate. Probabilistic simulations of hazard impacts can improve these assessments by explicitly attempting to quantify uncertainty and by better simulating dependence between complex multivariate drivers of hazards. In this study, probabilistic future timeseries of total water levels (TWLs) are generated from a stochastic climate emulator (TESLA; Anderson et al., 2019) for the Cascadia region, USA for use in a chronic hazard impact assessment. This assessment focuses on three hazard metrics: collision, overtopping, and beach safety, and also introduces a novel hotspot indicator to identify areas that may experience dramatic changes in hazard impacts compared to present day conditions. Results are presented for a subset of the Cascadia region (Rockaway Beach Littoral Cell, Oregon) to demonstrate the power of the probabilistic impact assessment approach. The results highlight how useful spatially varying, scenario-based hazard impacts assessments and hotspot indicators are for identifying which areas and types of hazards may require increased adaptation support. This approach enables us to piece apart the relative uncertainty of hazards as driven by SLR versus natural variability (caused by variation in climate, weather, and hydrodynamic drivers). 
                        more » 
                        « less   
                    
                            
                            Projecting Future Chronic Coastal Hazard Impacts, Hotspots, and Uncertainty at Regional Scale
                        
                    
    
            While there is high certainty that chronic coastal hazards like floodingand erosion, are increasing due to climate change induced sea-levelrise, there is high uncertainty surrounding the timing, intensity, andlocation of future hazard impacts. Assessments that quantify theseaspects of future hazards are critical for adaptation planning under achanging climate and can reveal new insights into the drivers of coastalhazards. In particular, probabilistic simulations of future hazardimpacts can improve these assessments by explicitly quantifyinguncertainty and by better simulating dependence structures between thecomplex multivariate drivers of hazards. In this study, a regional-scaleprobabilistic assessment of climate change induced coastal hazards isconducted for the Cascadia region, USA during the 21st century. Threeco-produced hazard proxies for beach safety, erosion, and flooding arequantified to identify areas of high hazard impacts and determine hazarduncertainty under three sea-level rise scenarios. A novel chroniccoastal hazard hotspot indicator is introduced that identifies areasthat may experience significant increases in hazard impacts compared topresent day conditions. We find that Southern Cascadia and NorthernWashington have larger hazard impacts and hazard uncertainty due totheir morphologic setting. Erosional hazards, relative to beach safetyand coastal flooding, will increase the most in Cascadia during the 21stcentury under all sea-level rise scenarios. Finally, we find that hazarduncertainty associated with wave and water level variability exceeds theuncertainty associated with sea-level-rise until the end of the century. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2103713
- PAR ID:
- 10521778
- Publisher / Repository:
- Authorea, Inc.
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Authorea, Inc.
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play—for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines—have received less attention, preventing assessments of these processes’ impacts compared to and combined with coastal erosion. Alaska’s Arctic Coastal Plain (ACP) is ideal for such assessments because of the high-density observations of topography, coastal retreat rates, and permafrost characteristics, and importance to Indigenous communities and oilfield infrastructure. Here, we produce 21st-century projections of Arctic shoreline position that include erosion, permafrost subsidence, and sea-level rise. Focusing on the ACP, we merge 5 m topography, satellite-derived coastal lake depth estimates, and empirical assessments of land subsidence due to permafrost thaw with projections of coastal erosion and sea-level rise for medium and high emissions scenarios from the Intergovernmental Panel on Climate Change’s AR6 Report. We find that by 2100, erosion and inundation will together transform the ACP, leading to 6-8x more land loss than coastal erosion alone and disturbing 8-11x more organic carbon. Without mitigating measures, by 2100, coastal change could damage 40 to 65% of infrastructure in present-day ACP coastal villages and 10 to 20% of oilfield infrastructure. Our findings highlight the risks that compounding climate hazards pose to coastal communities and underscore the need for adaptive planning for Arctic coastlines in the 21st century.more » « less
- 
            Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1 % floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km² (low), 160 km² (medium), or 300 km² (high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km² (low), 240 km² (medium), or 370 km² (high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from earthquake-cycle and climate-driven sea-level rise, and provide critical insights for tectonically active coastlines globally.more » « less
- 
            Climate-driven sea-level rise is increasing the frequency of coastal flooding worldwide, exacerbated locally by factors like land subsidence from groundwater and resource extraction. However, a process rarely considered in future sea-level rise scenarios is sudden (over minutes) land subsidence associated with great (>M8) earthquakes, which can exceed 1 m. Along the Washington, Oregon, and northern California coasts, the next great Cascadia subduction zone earthquake could cause up to 2 m of sudden coastal subsidence, dramatically raising sea level, expanding floodplains, and increasing the flood risk to local communities. Here, we quantify the potential expansion of the 1% floodplain (i.e., the area with an annual flood risk of 1%) under low (~0.5 m), medium (~1 m), and high (~2 m) earthquake-driven subsidence scenarios at 24 Cascadia estuaries. If a great earthquake occurred today, floodplains could expand by 90 km2(low), 160 km2(medium), or 300 km2(high subsidence), more than doubling the flooding exposure of residents, structures, and roads under the high subsidence scenario. By 2100, when climate-driven sea-level rise will compound the hazard, a great earthquake could expand floodplains by 170 km2(low), 240 km2(medium), or 370 km2(high subsidence), more than tripling the flooding exposure of residents, structures, and roads under the high subsidence scenario compared to the 2023 floodplain. Our findings can support decision-makers and coastal communities along the Cascadia subduction zone as they prepare for compound hazards from the earthquake cycle and climate-driven sea-level rise and provide critical insights for tectonically active coastlines globally.more » « less
- 
            Abstract The risk of compound coastal flooding in the San Francisco Bay Area is increasing due to climate change yet remains relatively underexplored. Using a novel hybrid statistical-dynamical downscaling approach, this study investigates the impacts of climate change induced sea-level rise and higher river discharge on the magnitude and frequency of flooding events as well as the relative importance of various forcing drivers to compound flooding within the Bay. Results reveal that rare occurrences of flooding under the present-day climate are projected to occur once every few hundred years under climate change with relatively low sea-level rise (0.5 m) but would become annual events under climate change with high sea-level rise (1.0 to 1.5 m). Results also show that extreme water levels that are presently dominated by tides will be dominated by sea-level rise in most locations of the Bay in the future. The dominance of river discharge to the non-tidal and non-sea-level rise driven water level signal in the North Bay is expected to extend ~15 km further seaward under extreme climate change. These findings are critical for informing climate adaptation and coastal resilience planning in San Francisco Bay.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    