skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Requirements-Driven Platform for Validating Field Operations of Small Uncrewed Aerial Vehicles
Flight-time failures of small Uncrewed Aerial Systems (sUAS) can have a severe impact on people or the environment. Therefore, sUAS applications must be thoroughly evaluated and tested to ensure their adherence to specified requirements, and safe behavior under real-world conditions, such as poor weather, wireless interference, and satellite failure. However, current simulation environments for autonomous vehicles, including sUAS, provide limited support for validating their behavior in diverse environmental contexts and moreover, lack a test harness to facilitate structured testing based on system-level requirements. We address these shortcomings by eliciting and specifying requirements for an sUAS testing and simulation platform, and developing and deploying it. The constructed platform, DroneWorld (\DW), allows sUAS developers to define the operating context, configure multi-sUAS mission requirements, specify safety properties, and deploy their own custom sUAS applications in a high-fidelity 3D environment. The DroneWorld Monitoring system collects runtime data from sUAS and the environment, analyzes compliance with safety properties, and captures violations. We report on two case studies in which we used our platform prior to real-world sUAS deployments, in order to evaluate sUAS mission behavior in various environmental contexts. Furthermore, we conducted a study with developers and found that DroneWorld simplifies the process of specifying requirements-driven test scenarios and analyzing acceptance test results.  more » « less
Award ID(s):
1931962
PAR ID:
10523094
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2689-5
Page Range / eLocation ID:
29 to 40
Subject(s) / Keyword(s):
Safety Assurance, Requirements Specification, Small Uncrewed Aerial Systems, Digital Shadow, Cyber-Physical Systems
Format(s):
Medium: X
Location:
Hannover, Germany
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Connected vehicle (CV) application developers need a development platform to build, test, and debug real-world CV applications, such as safety, mobility, and environmental applications, in edge-centric cyber-physical system (CPS). The objective of this paper is to develop and evaluate a scalable and secure CV application development platform (CVDeP) that enables application developers to build, test, and debug CV applications in real-time while meeting the functional requirements of any CV applications. The efficacy of the CVDeP was evaluated using two types of CV applications (one safety and one mobility application) and they were validated through field experiments at the South Carolina Connected Vehicle Testbed (SC-CVT). The analyses show that the CVDeP satisfies the functional requirements in relation to latency and throughput of the selected CV applications while maintaining the scalability and security of the platform and applications. 
    more » « less
  2. Small Unmanned Aerial Systems (sUAS) must meet rigorous safety standards when deployed in high-stress emergency response scenarios; however many reported accidents have involved humans in the loop. In this paper, we, therefore, present the HiFuzz testing framework, which uses fuzz testing to identify system vulnerabilities associated with human interactions. HiFuzz includes three distinct levels that progress from a low-cost, limited-fidelity, large-scale, no-hazard environment, using fully simulated Proxy Human Agents, via an intermediate level, where proxy humans are replaced with real humans, to a high-stakes, high-cost, real-world environment. Through applying HiFuzz to an autonomous multi-sUAS system-under-test, we show that each test level serves a unique purpose in revealing vulnerabilities and making the system more robust with respect to human mistakes. While HiFuzz is designed for testing sUAS systems, we further discuss its potential for use in other Cyber-Physical Systems. 
    more » « less
  3. Small Unmanned Aerial Systems (sUAS) must meet rigorous safety standards when deployed in high-stress emergency response scenarios; however many reported accidents have involved humans in the loop. In this paper, we, therefore, present the HiFuzz testing framework, which uses fuzz testing to identify system vulnerabilities associated with human interactions. HiFuzz includes three distinct levels that progress from a low-cost, limited-fidelity, large-scale, no-hazard environment, using fully simulated Proxy Human Agents, via an intermediate level, where proxy humans are replaced with real humans, to a high-stakes, high-cost, real-world environment. Through applying HiFuzz to an autonomous multi-sUAS system-under-test, we show that each test level serves a unique purpose in revealing vulnerabilities and making the system more robust with respect to human mistakes. While HiFuzz is designed for testing sUAS system, we further show that it is applicable across a broader range of Cyber-Physical Systems. 
    more » « less
  4. In emergency response scenarios, autonomous small Unmanned Aerial Systems (sUAS) must be configured and deployed quickly and safely to perform mission-specific tasks. In this paper, we present \DR, a Software Product Line for rapidly configuring and deploying a multi-role, multi-sUAS mission whilst guaranteeing a set of safety properties related to the sequencing of tasks within the mission. Individual sUAS behavior is governed by an onboard state machine, combined with coordination handlers which are configured dynamically within seconds of launch and ultimately determine the sUAS' behaviors, transition decisions, and interactions with other sUAS, as well as human operators. The just-in-time manner in which missions are configured precludes robust upfront testing of all conceivable combinations of features -- both within individual sUAS and across cohorts of collaborating ones. To ensure the absence of common types of configuration failures and to promote safe deployments, we check vital properties of the dynamically generated sUAS specifications and coordination handlers before sUAS are assigned their missions. We evaluate our approach in two ways. First, we perform validation tests to show that the end-to-end configuration process results in correctly executed missions, and second, we apply fault-based mutation testing to show that our safety checks successfully detect incorrect task sequences. 
    more » « less
  5. Modern cyber-physical systems (CPS) are often developed in a model-based development (MBD) paradigm. The MBD paradigm involves the construction of different kinds of models: (1) a plant model that encapsulates the physical components of the system (e.g., mechanical, electrical, chemical components) using representations based on differential and algebraic equations, (2) a controller model that encapsulates the embedded software components of the system, and (3) an environment model that encapsulates physical assumptions on the external environment of the CPS application. In order to reason about the correctness of CPS applications, we typically pose the following question: For all possible environment scenarios, does the closed-loop system consisting of the plant and the controller exhibit the desired behavior? Typically, the desired behavior is expressed in terms of properties that specify unsafe behaviors of the closed-loop system. Often, such behaviors are expressed using variants of real-time temporal logics. In this chapter, we will examine formal methods based on bounded-time reachability analysis, simulation-guided reachability analysis, deductive techniques based on safety invariants, and formal, requirement-driven testing techniques. We will review key results in the literature, and discuss the scalability and applicability of such systems to various academic and industrial contexts. We conclude this chapter by discussing the challenge to formal verification and testing techniques posed by newer CPS applications that use AI-based software components. 
    more » « less