skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A metastatistical frequency analysis of extreme storm surge hazard along the US coastline
Frequency analysis of extreme storm surge is crucial for coastal flood risk assessments. To date, such analyses are based on traditional extreme value theory (EVT) and its associated generalized extreme value (GEV) distribution. The metastatistical extreme value distribution (MEVD) provides a new approach that can alleviate limitations of EVT. This paper provides a comparison between the GEV distribution and the MEVD on their ability to predict “unseen” upper-tail quantiles of storm surge along the US coastline. We analyze the error structure of these distributions by performing a cross-validation experiment where we repeatedly divide the data record into a calibration and validation set, respectively, and then compute the predictive non-dimensional error. We find that the MEVD provides comparable estimates of extreme storm surge to those of the GEV distribution, with discrepancies being subtle and dependent on tide gauge location and calibration set length. Additionally, we show that predictions from the MEVD are more robust with less variability in error. Finally, we illustrate that the employment of the MEVD, as opposed to classical EVT, can lead to remarkable differences in design storm surge height; this has serious implications for engineering applications at sites where the novel MEVD is found more appropriate.  more » « less
Award ID(s):
2238000 2223893 2223894
PAR ID:
10523836
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Coastal Engineering Journal
Volume:
66
Issue:
2
ISSN:
2166-4250
Page Range / eLocation ID:
380 to 394
Subject(s) / Keyword(s):
Extreme Sea Level Generalized extreme value Distribution Metastatistical extreme value distribution
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Storm surge events are a key driver of widespread flooding, particularly when combined with astronomical tides superimposed on mean sea level (MSL). Coastal storms exhibit seasonal variability which translates into a seasonal cycle in storm surge activity. Understanding changes in the seasonal storm surge cycle is critical as both changes in the amplitude and the phase may alter the flood potential, especially when compounded with changes in the MSL cycle. Here, a comprehensive analysis of the storm surge seasonal cycle and its links to the MSL seasonal cycle is performed using tide gauge observations from a quasi‐global data set. Harmonic analysis is used to assess the mean and changing storm surge seasonal cycles over time. Extreme value analysis is applied to explore the effect of seasonal changes on storm surge return levels. We also quantify the influence of large‐scale climate modes, and we compare how the seasonality of storm surge and MSL have changed relative to each other. The peak of the storm surge cycle typically occurs during winter for tide gauges outside of tropical cyclone regions, where there is also greater variability in the phase of the storm surge cycle. The timing of the peak varied by more than a month at 21% of the tide gauges analyzed. The MSL and storm surge cycles peaked at least once within 30 days over the historic records at 74% of tide gauges. 
    more » « less
  2. Abstract Temporal storm surge clustering refers to a series of events affecting the same region within a short period of time, which can strongly influence coastal flooding impacts and erosion. Here, we analyze global storm surge clustering from tide gauges and a state-of-the-art global model hindcast to identify geographical hotspots of extreme storm surge clusters and assess event frequencies. We study the spatial distribution as well as the contribution of different event intensities to clustering. On average, globally, 92% of coastal locations show significant temporal clustering for 1-year return period events, and 25% for 5-year return level events, although notable spatial differences exist. Our results reveal two distinct clustering regimes: (i) short timescale clustering, where events occur in rapid succession (intra-annual), and (ii) long timescales (inter-annual), providing varying recovery times between events. We also test the validity of assuming a Poisson distribution, commonly used in storm surge frequency analyses. Our results show that >80% of the stations analyzed do not follow a Poisson distribution, at least when including events that are not the most extreme but exceeded, for example, the 1-year return level. These findings offer insights into temporal clustering dynamics of storm surges and their implications for coastal hazard assessments. 
    more » « less
  3. Storm surges are the most important driver of flooding in many coastal areas. Understanding the spatial extent of storm surge events has important financial and practical implications for flood risk management, reinsurance, infrastructure reliability and emergency response. In this paper, we apply a new tracking algorithm to a high-resolution surge hindcast (CODEC, 1980–2017) to characterize the spatial dependence and temporal evolution of extreme surge events along the coastline of the UK and Ireland. We quantify the severity of each spatial event based on its footprint extremity to select and rank the collection of events. Several surge footprint types are obtained based on the most impacted coastal stretch from each particular event, and these are linked to the driving storm tracks. Using the collection of the extreme surge events, we assess the spatial distribution and interannual variability of the duration, size, severity, and type. We find that the northeast coastline is most impacted by the longest and largest storm surge events, while the English Channel experiences the shortest and smallest storm surge events. The interannual variability indicates that the winter seasons of 1989-90 and 2013–14 were the most serious in terms of the number of events and their severity, based on the return period along the affected coastlines. The most extreme surge event and the highest number of events occurred in the winter season 1989–90, while the proportion of events with larger severities was higher during the winter season 2013–14. This new spatial analysis approach of surge extremes allows us to distinguish several categories of spatial footprints of events around the UK/Ireland coast and link these to distinct storm tracks. The spatial dependence structures detected can improve multivariate statistical methods which are crucial inputs to coastal flooding assessments. 
    more » « less
  4. Data-driven software is increasingly being used as a critical component of automated decision-support systems. Since this class of software learns its logic from historical data, it can encode or amplify discriminatory practices. Previous research on algorithmic fairness has focused on improving “average-case” fairness. On the other hand, fairness at the extreme ends of the spectrum, which often signifies lasting and impactful shifts in societal attitudes, has received significantly less emphasis. Leveraging the statistics of extreme value theory (EVT), we propose a novel fairness criterion called extreme counterfactual discrimination (ECD). This criterion estimates the worst-case amounts of disadvantage in outcomes for individuals solely based on their memberships in a protected group. Utilizing tools from search-based software engineering and generative AI, we present a randomized algorithm that samples a statistically significant set of points from the tail of ML outcome distributions even if the input dataset lacks a sufficient number of relevant samples. We conducted several experiments on four ML models (deep neural networks, logistic regression, and random forests) over 10 socially relevant tasks from the literature on algorithmic fairness. First, we evaluate the generative AI methods and find that they generate sufficient samples to infer valid EVT distribution in 95% of cases. Remarkably, we found that the prevalent bias mitigators reduce the average-case discrimination but increase the worst-case discrimination significantly in 35% of cases. We also observed that even the tail-aware mitigation algorithm—MiniMax-Fairness—increased the worst-case discrimination in 30% of cases. We propose a novel ECD-based mitigator that improves fairness in the tail in 90% of cases with no degradation of the average-case discrimination. We hope that the EVT framework serves as a robust tool for evaluating fairness in both average-case and worst-case discrimination. 
    more » « less
  5. Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations in the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable water content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences. 
    more » « less