skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2025

Title: Controls on Dissolved Barium and Radium‐226 Distributions in the Pacific Ocean Along GEOTRACES GP15
Abstract Radium‐226(226Ra) and barium (Ba) exhibit similar chemical behaviors and distributions in the marine environment, serving as valuable tracers of water masses, ocean mixing, and productivity. Despite their similar distributions, these elements originate from distinct sources and undergo disparate biogeochemical cycles, which might complicate the use of these tracers. In this study, we investigate these processes by analyzing a full‐depth ocean section of226Ra activities (T1/2 = 1,600 years) and barium concentrations obtained from samples collected along the US GEOTRACES GP15 Pacific Meridional Transect during September–November 2018, spanning from Alaska to Tahiti. We find that surface waters possess low levels of226Ra and Ba due to export of sinking particulates, surpassing inputs from the continental margins. In contrast, deep waters have higher226Ra activities and Ba concentrations due to inputs from particle regeneration and sedimentary sources, with226Ra inputs primarily resulting from the decay of230Th in sediments. Further, dissolved226Ra and Ba exhibit a strong correlation along the GP15 section. To elucidate the drivers of the correlation, we used a water mass analysis, enabling us to quantify the influence of water mass mixing relative to non‐conservative processes. While a significant fraction of each element's distribution can be explained by conservative mixing, a considerable fraction cannot. The balance is driven using non‐conservative processes, such as sedimentary, rivers, or hydrothermal inputs, uptake and export by particles, and particle remineralization. Our study demonstrates the utility of226Ra and Ba as valuable biogeochemical tracers for understanding ocean processes, while shedding light on conservative and myriad non‐conservative processes that shape their respective distributions.  more » « less
Award ID(s):
1737024 1736949 2048604
PAR ID:
10524217
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
38
Issue:
6
ISSN:
0886-6236
Subject(s) / Keyword(s):
North Pacific Ocean radium barium GEOTRACES
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Early studies revealed relationships between barium (Ba), particulate organic carbon and silicate, suggesting applications for Ba as a paleoproductivity tracer and as a tracer of modern ocean circulation.But, what controls the distribution of barium (Ba) in the oceans?Here, we investigated the Arctic Ocean Ba cycle through a one‐of‐a‐kind data set containing dissolved (dBa), particulate (pBa), and stable isotope Ba ratio (δ138Ba) data from four Arctic GEOTRACES expeditions conducted in 2015. We hypothesized that margins would be a substantial source of Ba to the Arctic Ocean water column. The dBa, pBa, and δ138Ba distributions all suggest significant modification of inflowing Pacific seawater over the shelves, and the dBa mass balance implies that ∼50% of the dBa inventory (upper 500 m of the Arctic water column) was supplied by nonconservative inputs. Calculated areal dBa fluxes are up to 10 μmol m−2 day−1on the margin, which is comparable to fluxes described in other regions. Applying this approach to dBa data from the 1994 Arctic Ocean Survey yields similar results. The Canadian Arctic Archipelago did not appear to have a similar margin source; rather, the dBa distribution in this section is consistent with mixing of Arctic Ocean‐derived waters and Baffin Bay‐derived waters. Although we lack enough information to identify the specifics of the shelf sediment Ba source, we suspect that a sedimentary remineralization and terrigenous sources (e.g., submarine groundwater discharge or fluvial particles) are contributors. 
    more » « less
  2. Abstract Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess230Th activities. Th‐normalized pBaxsfluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxsburial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance. 
    more » « less
  3. Abstract Radium isotopes have been used to trace nutrient, carbon, and trace metal fluxes inputs from ocean margins. However, these approaches require a full accounting of radium sources to the coastal ocean including rivers. Here, we aim to quantify river radium inputs into the Arctic Ocean for the first time for226Ra and to refine the estimates for228Ra. Using new and existing data, we find that the estimated combined (dissolved plus desorbed) annual226Ra and228Ra fluxes to the Arctic Ocean are [7.0–9.4] × 1014dpm y−1and [15–18] × 1014dpm y−1, respectively. Of these totals, 44% and 60% of the river226Ra and228Ra, respectively are from suspended sediment desorption, which were estimated from laboratory incubation experiments. Using Ra isotope data from 20 major rivers around the world, we derived global annual226Ra and228Ra fluxes of [7.4–17] × 1015and [15–27] × 1015dpm y−1, respectively. As climate change spurs rapid Arctic warming, hydrological cycles are intensifying and coastal ice cover and permafrost are diminishing. These river radium inputs to the Arctic Ocean will serve as a valuable baseline as we attempt to understand the changes that warming temperatures are having on fluxes of biogeochemically important elements to the Arctic coastal zone. 
    more » « less
  4. Abstract Despite the Pacific being the location of the earliest seawater Cd studies, the processes which control Cd distributions in this region remain incompletely understood, largely due to the sparsity of data. Here, we present dissolved Cd and δ114Cd data from the US GEOTRACES GP15 meridional transect along 152°W from the Alaskan margin to the equatorial Pacific. Our examination of this region's surface ocean Cd isotope systematics is consistent with previous observations, showing a stark disparity between northern Cd‐rich high‐nutrient low‐chlorophyll waters and Cd‐depleted waters of the subtropical and equatorial Pacific. Away from the margin, an open system model ably describes data in Cd‐depleted surface waters, but atmospheric inputs of isotopically light Cd likely play an important role in setting surface Cd isotope ratios (δ114Cd) at the lowest Cd concentrations. Below the surface, Southern Ocean processes and water mass mixing are the dominant control on Pacific Cd and δ114Cd distributions. Cd‐depleted Antarctic Intermediate Water has a far‐reaching effect on North Pacific intermediate waters as far as 47°N, contrasting with northern‐sourced Cd signatures in North Pacific Intermediate Water. Finally, we show that the previously identified negative Cd* signal at depth in the North Pacific is associated with the PO4maximum and is thus a consequence of an integrated regeneration signal of Cd and PO4at a slightly lower Cd:P ratio than the deep ocean ratio (0.35 mmol mol−1), rather than being related to in situ removal processes in low‐oxygen waters. 
    more » « less
  5. Abstract Distributions of the natural radionuclide210Po and its grandparent210Pb along the GP15 Pacific Meridional Transect provide information on scavenging rates of reactive chemical species throughout the water column and fluxes of particulate organic carbon (POC) from the primary production zone (PPZ).210Pb is in excess of its grandparent226Ra in the upper 400–700 m due to the atmospheric flux of210Pb. Mid‐water210Pb/226Ra activity ratios are close to radioactive equilibrium (1.0) north of ∼20°N, indicating slow scavenging, but deficiencies at stations near and south of the equator suggest more rapid scavenging associated with a “particle veil” located at the equator and hydrothermal processes at the East Pacific Rise. Scavenging of210Pb and210Po is evident in the bottom 500–1,000 m at most stations due to enhanced removal in the nepheloid layer. Deficits in the PPZ of210Po (relative to210Pb) and210Pb (relative to226Ra decay and the210Pb atmospheric flux), together with POC concentrations and particulate210Po and210Pb activities, are used to calculate export fluxes of POC from the PPZ.210Po‐derived POC fluxes on large (>51 μm) particles range from 15.5 ± 1.3 mmol C/m2/d to 1.5 ± 0.2 mmol C/m2/d and are highest in the Subarctic North Pacific;210Pb‐derived fluxes range from 6.7 ± 1.8 mmol C/m2/d to 0.2 ± 0.1 mmol C/m2/d. Both210Po‐ and210Pb‐derived POC fluxes are greater than those calculated using the234Th proxy, possibly due to different integration times of the radionuclides, considering their different radioactive mean‐lives and scavenging mean residence times. 
    more » « less