Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only do the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users -- as done by virtually all learning-to-rank algorithms -- can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust. 
                        more » 
                        « less   
                    
                            
                            Fairness of Interaction in Ranking under Position, Selection, and Trust Bias
                        
                    
    
            Ranking algorithms in online platforms serve not only users on the demand side, but also items on the supply side. While ranking has traditionally presented items in an order that maximizes their utility to users, the uneven interactions that different items receive as a result of such a ranking can pose item fairness concerns. Moreover, interaction is affected by various forms of bias, two of which have received considerable attention: position bias and selection bias. Position bias occurs due to lower likelihood of observation for items in lower ranked positions. Selection bias occurs because interaction is not possible with items below an arbitrary cutoff position chosen by the front-end application at deployment time (i.e., showing only the top-kitems). A less studied, third form of bias, trust bias, is equally important, as it makes interaction dependent on rank even after observation, by influencing the item’s perceived relevance. To capture interaction disparity in the presence of all three biases, in this paper we introduce a flexible fairness metric. Using this metric, we develop a post-processing algorithm that optimizes fairness in ranking through greedy exploration and allows a tradeoff between fairness and utility. Our algorithm outperforms state-of-the-art fair ranking algorithms on several datasets. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10525867
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Recommender Systems
- ISSN:
- 2770-6699
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users – as done by virtually all learning-to-rank algorithms – can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.more » « less
- 
            Information access systems, such as search engines and recommender systems, order and position results based on their estimated relevance. These results are then evaluated for a range of concerns, including provider-side fairness: whether exposure to users is fairly distributed among items and the people who created them. Several fairness-aware ranking and re-ranking techniques have been proposed to ensure fair exposure for providers, but this work focuses almost exclusively on linear layouts in which items are displayed in single ranked list. Many widely-used systems use other layouts, such as the grid views common in streaming platforms, image search, and other applications. Providing fair exposure to providers in such layouts is not well-studied. We seek to fill this gap by providing a grid-aware re-ranking algorithm to optimize layouts for provider-side fairness by adapting existing re-ranking techniques to grid-aware browsing models, and an analysis of the effect of grid-specific factors such as device size on the resulting fairness optimization. Our work provides a starting point and identifies open gaps in ensuring provider-side fairness in grid-based layouts.more » « less
- 
            Ranking items by their probability of relevance has long been the goal of conventional ranking systems. While this maximizes traditional criteria of ranking performance, there is a growing understanding that it is an oversimplification in online platforms that serve not only a diverse user population, but also the producers of the items. In particular, ranking algorithms are expected to be fair in how they serve all groups of users --- not just the majority group --- and they also need to be fair in how they divide exposure among the items. These fairness considerations can partially be met by adding diversity to the rankings, as done in several recent works. However, we show in this paper that user fairness, item fairness and diversity are fundamentally different concepts. In particular, we find that algorithms that consider only one of the three desiderata can fail to satisfy and even harm the other two. To overcome this shortcoming, we present the first ranking algorithm that explicitly enforces all three desiderata. The algorithm optimizes user and item fairness as a convex optimization problem which can be solved optimally. From its solution, a ranking policy can be derived via a novel Birkhoff-von Neumann decomposition algorithm that optimizes diversity. Beyond the theoretical analysis, we investigate empirically on a new benchmark dataset how effectively the proposed ranking algorithm can control user fairness, item fairness and diversity, as well as the trade-offs between them.more » « less
- 
            In social choice, traditional Kemeny rank aggregation combines the preferences of voters, expressed as rankings, into a single consensus ranking without consideration for how this ranking may unfairly affect marginalized groups (i.e., racial or gender). Developing fair rank aggregation methods is critical due to their societal influence in applications prioritizing job applicants, funding proposals, and scheduling medical patients. In this work, we introduce the Fair Exposure Kemeny Aggregation Problem (FairExp-kap) for combining vast and diverse voter preferences into a single ranking that is not only a suitable consensus, but ensures opportunities are not withheld from marginalized groups. In formalizing FairExp-kap, we extend the fairness of exposure notion from information retrieval to the rank aggregation context and present a complimentary metric for voter preference representation. We design algorithms for solving FairExp-kap that explicitly account for position bias, a common ranking-based concern that end-users pay more attention to higher ranked candidates. epik solves FairExp-kap exactly by incorporating non-pairwise fairness of exposure into the pairwise Kemeny optimization; while the approximate epira is a candidate swapping algorithm, that guarantees ranked candidate fairness. Utilizing comprehensive synthetic simulations and six real-world datasets, we show the efficacy of our approach illustrating that we succeed in mitigating disparate group exposure unfairness in consensus rankings, while maximally representing voter preferences.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    