We study linear Fisher markets with satiation. In these markets, sellers have earning limits, and buyers have utility limits. Beyond applications in economics, they arise in the context of maximizing Nash social welfare when allocating indivisible items to agents. In contrast to markets with either earning or utility limits, markets with both limits have not been studied before. They turn out to have fundamentally different properties. In general, the existence of competitive equilibria is not guaranteed. We identify a natural property of markets (termed money clearing) that implies existence. We show that the set of equilibria is not always convex, answering a question posed in the literature. We design an FPTAS to compute an approximate equilibrium and prove that the problem of computing an exact equilibrium lies in the complexity class continuous local search ([Formula: see text]; i.e., the intersection of polynomial local search ([Formula: see text]) and polynomial parity arguments on directed graphs ([Formula: see text])). For a constant number of buyers or goods, we give a polynomial-time algorithm to compute an exact equilibrium. We show how (approximate) equilibria can be rounded and provide the first constant-factor approximation algorithm (with a factor of 2.404) for maximizing Nash social welfare when agents have capped linear (also known as budget-additive) valuations. Finally, we significantly improve the approximation hardness for additive valuations to [Formula: see text]. Funding: J. Garg was supported by the National Science Foundation [Grant CCF-1942321 (CAREER)]. M. Hoefer was supported by Deutsche Forschungsgemeinschaft [Grants Ho 3831/5-1, Ho 3831/6-1, and Ho 3831/7-1]. 
                        more » 
                        « less   
                    
                            
                            An Algorithm for the Assignment Game Beyond Additive Valuations
                        
                    
    
            The assignment game, introduced by Shapley and Shubik [1971], is a classic model for two-sided matching markets between buyers and sellers. In the original assignment game, it is assumed that payments lead to transferable utility and that buyers have unit-demand valuations for the items being sold. There has since been substantial work studying various extensions of the assignment game. The first main area of extension is to imperfectly transferable utility, which is when frictions, taxes, or fees impede the transfer of money between agents. The second is with more complex valuation functions, in particular gross substitutes valuations, which describe substitutable goods. Multiple efficient algorithms have been proposed for computing a competitive equilibrium, the standard solution concept in assignment games, in each of these two settings. However, these lines of work have been mostly independent, with no algorithmic results combining the two. Our main result is an efficient algorithm for computing competitive equilibria in a setting encompassing both those generalizations. We assume that sellers have multiple copies of each items. A buyer $$i$$'s quasi-linear utility is given by their gross substitute valuation for the bundle $$S$$ of items they are assigned to, minus the sum of the payments $$q_{ij}(p_j)$$ for each item $$j \in S$$, where $$p_j$$ is the price of item $$j$$ and $$q_{ij}$$ is piecewise linear, strictly increasing. Our algorithm combines procedures for matroid intersection problems with augmenting forest techniques from matching theory. We also show that in a mild generalization of our model without quasilinear utilities, computing a competitive equilibrium is NP-hard. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10526932
- Publisher / Repository:
- 25th ACM Conference on Economics and Computation
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus.more » « less
- 
            null (Ed.)We consider the problem of selling perishable items to a stream of buyers in order to maximize social welfare. A seller starts with a set of identical items, and each arriving buyer wants any one item, and has a valuation drawn i.i.d. from a known distribution. Each item, however, disappears after an a priori unknown amount of time that we term the horizon for that item. The seller knows the (possibly different) distribution of the horizon for each item, but not its realization till the item actually disappears. As with the classic prophet inequalities, the goal is to design an online pricing scheme that competes with the prophet that knows the horizon and extracts full social surplus (or welfare). Our main results are for the setting where items have independent horizon distributions satisfying the monotone-hazard-rate (MHR) condition. Here, for any number of items, we achieve a constant-competitive bound via a conceptually simple policy that balances the rate at which buyers are accepted with the rate at which items are removed from the system. We implement this policy via a novel technique of matching via probabilistically simulating departures of the items at future times. Moreover, for a single item and MHR horizon distribution with mean, we show a tight result: There is a fixed pricing scheme that has competitive ratio at most 2 - 1/μ, and this is the best achievable in this class. We further show that our results are best possible. First, we show that the competitive ratio is unbounded without the MHR assumption even for one item. Further, even when the horizon distributions are i.i.d. MHR and the number of items becomes large, the competitive ratio of any policy is lower bounded by a constant greater than 1, which is in sharp contrast to the setting with identical deterministic horizons.more » « less
- 
            We study the revenue guarantees and approximability of item pricing. Recent work shows that with n heterogeneous items, item-pricing guarantees an O(logn) approximation to the optimal revenue achievable by any (buy-many) mechanism, even when buyers have arbitrarily combinatorial valuations. However, finding good item prices is challenging – it is known that even under unit-demand valuations, it is NP-hard to find item prices that approximate the revenue of the optimal item pricing better than O(√n). Our work provides a more fine-grained analysis of the revenue guarantees and computational complexity in terms of the number of item “categories” which may be significantly fewer than n. We assume the items are partitioned in k categories so that items within a category are totally-ordered and a buyer’s value for a bundle depends only on the best item contained from every category. We show that item-pricing guarantees an O(logk) approximation to the optimal (buy-many) revenue and provide a PTAS for computing the optimal item-pricing when k is constant. We also provide a matching lower bound showing that the problem is (strongly) NP-hard even when k=1. Our results naturally extend to the case where items are only partially ordered, in which case the revenue guarantees and computational complexity depend on the width of the partial ordering, i.e. the largest set for which no two items are comparable.more » « less
- 
            null (Ed.)We study the problem of fair allocation for indivisible goods. We use the maximin share paradigm introduced by Budish [Budish E (2011) The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes. J. Political Econom. 119(6):1061–1103.] as a measure of fairness. Kurokawa et al. [Kurokawa D, Procaccia AD, Wang J (2018) Fair enough: Guaranteeing approximate maximin shares. J. ACM 65(2):8.] were the first to investigate this fundamental problem in the additive setting. They showed that in delicately constructed examples, not everyone can obtain a utility of at least her maximin value. They mitigated this impossibility result with a beautiful observation: no matter how the utility functions are made, we always can allocate the items to the agents to guarantee each agent’s utility is at least 2/3 of her maximin value. They left open whether this bound can be improved. Our main contribution answers this question in the affirmative. We improve their approximation result to a 3/4 factor guarantee.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    