In this paper, we are concerned with a semi-discrete complex short-pulse (sdCSP) equation of both focusing and defocusing types, which can be viewed as an analogue to the Ablowitz–Ladik lattice in the ultra-short-pulse regime. By using a generalized Darboux transformation method, various soliton solutions to this newly integrable semi-discrete equation are studied with both zero and non-zero boundary conditions. To be specific, for the focusing sdCSP equation, the multi-bright solution (zero boundary conditions), multi-breather and high-order rogue wave solutions (non-zero boundary conditions) are derived, while for the defocusing sdCSP equation with non-zero boundary conditions, the multi-dark soliton solution is constructed. We further show that, in the continuous limit, all the solutions obtained converge to the ones for its original CSP equation (Ling et al . 2016 Physica D 327 , 13–29 ( doi:10.1016/j.physd.2016.03.012 ); Feng et al . 2016 Phys. Rev. E 93 , 052227 ( doi:10.1103/PhysRevE.93.052227 )). 
                        more » 
                        « less   
                    
                            
                            Extreme Superposition: High-Order Fundamental Rogue Waves in the Far-Field Regime
                        
                    
    
            We study fundamental rogue-wave solutions of the focusing nonlinear Schr\"odinger equation in the limit that the order of the rogue wave is large and the independent variables $(x,t)$ are proportional to the order (the far-field limit). We first formulate a Riemann-Hilbert representation of these solutions that allows the order to vary continuously rather than by integer increments. The intermediate solutions in this continuous family include also soliton solutions for zero boundary conditions spectrally encoded by a single complex-conjugate pair of poles of arbitrary order, as well as other solutions having nonzero boundary conditions matching those of the rogue waves albeit with far slower decay as $$x\to\pm\infty$$. The large-order far-field asymptotic behavior of the solution depends on which of three disjoint regions $$\mathcal{C}$$ (the ``channels''), $$\mathcal{S}$$ (the ``shelves''), and $$\mathcal{E}$$(the ``exterior domain'') contains the rescaled variables. On the region \mathcal{C}, the amplitude is small and the solution is highly oscillatory, while on the region \mathcal{S}, the solution is approximated by a modulated plane wave with a highly oscillatory correction term. The asymptotic behavior on these two domains is the same for all continuous orders. Assuming that the order belongs to the discrete sequence characteristic of rogue-wave solutions, the asymptotic behavior of the solution on the region $$\exterior$$ resembles that on \mathcal{S} but without the oscillatory correction term. Solutions of other continuous orders behave quite differently on $$\mathcal{E}$$. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10532319
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Memoirs of the American Mathematical Society
- Volume:
- 300
- Issue:
- 1505
- ISSN:
- 0065-9266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We construct the multi‐breather solutions of the focusing nonlinear Schrödinger equation (NLSE) on the background of elliptic functions by the Darboux transformation, and express them in terms of the determinant of theta functions. The dynamics of the breathers in the presence of various kinds of backgrounds such as dn, cn, and nontrivial phase‐modulating elliptic solutions are presented, and their behaviors dependent on the effect of backgrounds are elucidated. We also determine the asymptotic behaviors for the multibreather solutions with different velocities in the limit, where the solution in the neighborhood of each breather tends to the simple one‐breather solution. Furthermore, we exactly solve the linearized NLSE using the squared eigenfunction and determine the unstable spectra for elliptic function background. By using them, the Akhmediev breathers arising from these modulational instabilities are plotted and their dynamics are revealed. Finally, we provide the rogue wave and higher order rogue wave solutions by taking the special limit of the breather solutions at branch points and the generalized Darboux transformation. The resulting dynamics of the rogue waves involves rich phenomena, depending on the choice of the background and possessing different velocities relative to the background. We also provide an example of the multi‐ and higher order rogue wave solution.more » « less
- 
            Abstract Up to the third-order rogue wave solutions of the Sasa–Satsuma (SS) equation are derived based on the Hirota’s bilinear method and Kadomtsev–Petviashvili hierarchy reduction method. They are expressed explicitly by rational functions with both the numerator and denominator being the determinants of even order. Four types of intrinsic structures are recognized according to the number of zero-amplitude points. The first- and second-order rogue wave solutions agree with the solutions obtained so far by the Darboux transformation. In spite of the very complicated solution form compared with the ones of many other integrable equations, the third-order rogue waves exhibit two configurations: either a triangle or a distorted pentagon. Both the types and configurations of the third-order rogue waves are determined by different choices of free parameters. As the nonlinear Schrödinger equation is a limiting case of the SS equation, it is shown that the degeneration of the first-order rogue wave of the SS equation converges to the Peregrine soliton.more » « less
- 
            null (Ed.)In this paper, we study the asymptotic behavior of BV functions in complete metric measure spaces equipped with a doubling measure supporting a 1-Poincare inequality. We show that at almost every point x outside the Cantor and jump parts of a BV function, the asymptotic limit of the function is a Lipschitz continuous function of least gradient on a tangent space to the metric space based at x. We also show that, at co-dimension 1 Hausdorff measure almost every measure-theoretic boundary point of a set E of finite perimeter, there is an asymptotic limit set (E)∞ corresponding to the asymptotic expansion of E and that every such asymptotic limit (E)∞ is a quasiminimal set of finite perimeter. We also show that the perimeter measure of (E)∞ is Ahlfors co-dimension 1 regular.more » « less
- 
            Abstract We show that new types of rogue wave patterns exist in integrable systems, and these rogue patterns are described by root structures of Okamoto polynomial hierarchies. These rogue patterns arise when the τ functions of rogue wave solutions are determinants of Schur polynomials with index jumps of three, and an internal free parameter in these rogue waves gets large. We demonstrate these new rogue patterns in the Manakov system and the three‐wave resonant interaction system. For each system, we derive asymptotic predictions of its rogue patterns under a large internal parameter through Okamoto polynomial hierarchies. Unlike the previously reported rogue patterns associated with the Yablonskii–Vorob'ev hierarchy, a new feature in the present rogue patterns is that the mapping from the root structure of Okamoto‐hierarchy polynomials to the shape of the rogue pattern is linear only to the leading order, but becomes nonlinear to the next order. As a consequence, the current rogue patterns are often deformed, sometimes strongly deformed, from Okamoto‐hierarchy root structures, unless the underlying internal parameter is very large. Our analytical predictions of rogue patterns are compared to true solutions, and excellent agreement is observed, even when rogue patterns are strongly deformed from Okamoto‐hierarchy root structures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    