skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A priori error estimates of two monolithic schemes for Biot's consolidation model
Abstract This paper concentrates on a priori error estimates of two monolithic schemes for Biot's consolidation model based on the three‐field formulation introduced by Oyarzúa et al. (SIAM J Numer Anal, 2016). The spatial discretizations are based on the Taylor–Hood finite elements combined with Lagrange elements for the three primary variables. We employ two different schemes to discretize the time domain. One uses the backward Euler method, and the other applies the combination of the backward Euler and Crank‐Nicolson methods. A priori error estimates show that both schemes are unconditionally convergent with optimal error orders. Detailed numerical experiments are presented to validate the theoretical analysis.  more » « less
Award ID(s):
1831950 1700328
PAR ID:
10532789
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Numerical Methods for Partial Differential Equations
Volume:
40
Issue:
1
ISSN:
0749-159X
Subject(s) / Keyword(s):
a priori error estimates, Biot’s model, finite element
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less
  2. This paper develops, analyzes and tests a time-accurate partitioned method for the Stokes-Darcy equations. The method combines a time filter and Backward Euler scheme, is second order accurate and provide, at no extra complexity, an estimated the temporal error. This approach post-processes the solutions of Backward Euler scheme by adding three lines to original codes to increase the time accuracy from first order to second order. We prove long time stability and error estimates of Backward Euler plus time filter with constant time stepsize. Moreover, we extend the approach to variable time stepsize and construct adaptive algorithms. Numerical tests show convergence of our method and support the theoretical analysis. 
    more » « less
  3. In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimates in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh 2 and the second order TVD-RK scheme needs $$ \tau \le \rho {h}^{\frac{4}{3}}$$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h . 
    more » « less
  4. We present a strongly conservative and pressure-robust hybridizable discontinuous Galerkin method for the coupled time-dependent Navier–Stokes and Darcy problem. We show existence and uniqueness of a solution and present an optimala priorierror analysis for the fully discrete problem when using Backward Euler time stepping. The theoretical results are verified by numerical examples. 
    more » « less
  5. The objective of this paper is to develop efficient numerical algorithms for the linear advection-diffusion equation in fractured porous media. A reduced fracture model is considered where the fractures are treated as interfaces between subdomains and the interactions between the fractures and the surrounding porous medium are taken into account. The model is discretized by a backward Euler upwind-mixed hybrid finite element method in which the flux variable represents both the advective and diffusive fluxes. The existence, uniqueness, as well as optimal error estimates in both space and time for the fully discrete coupled problem are established. Moreover, to facilitate different time steps in the fracture-interface and the subdomains, global-in-time, nonoverlapping domain decomposition is utilized to derive two implicit iterative solvers for the discrete problem. The first method is based on the time-dependent Steklov–Poincaré operator, while the second one employs the optimized Schwarz waveform relaxation (OSWR) approach with Ventcel-Robin transmission conditions. A discrete space-time interface system is formulated for each method and is solved iteratively with possibly variable time step sizes. The convergence of the OSWR-based method with conforming time grids is also proved. Finally, numerical results in two dimensions are presented to verify the optimal order of convergence of the monolithic solver and to illustrate the performance of the two decoupled schemes with local time-stepping on problems of high Péclet numbers. 
    more » « less