skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interactive effects of intrinsic and extrinsic factors on metabolic rate
Metabolism energizes all biological processes, and its tempo may importantly influence the ecological success and evolutionary fitness of organisms. Therefore, understanding the broad variation in metabolic rate that exists across the living world is a fundamental challenge in biology. To further the development of a more reliable and holistic picture of the causes of this variation, we review several examples of how various intrinsic (biological) and extrinsic (environmental) factors (including body size, cell size, activity level, temperature, predation and other diverse genetic, cellular, morphological, physiological, behavioural and ecological influences) can interactively affect metabolic rate in synergistic or antagonistic ways. Most of the interactive effects that have been documented involve body size, temperature or both, but future research may reveal additional ‘hub factors’. Our review highlights the complex, intimate inter-relationships between physiology and ecology, knowledge of which can shed light on various problems in both disciplines, including variation in physiological adaptations, life histories, ecological niches and various organism-environment interactions in ecosystems. We also discuss theoretical and practical implications of interactive effects on metabolic rate and provide suggestions for future research, including holistic system analyses at various hierarchical levels of organization that focus on interactive proximate (functional) and ultimate (evolutionary) causal networks. This article is part of the theme issue ‘The evolutionary significance of variation in metabolic rates’.  more » « less
Award ID(s):
2106067
PAR ID:
10533709
Author(s) / Creator(s):
;
Publisher / Repository:
The Royal Society Publishing
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
379
Issue:
1896
ISSN:
0962-8436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Metabolism drives various biological processes, potentially influencing the ecological success and evolutionary fitness of species. Understanding diverse metabolic rates is fundamental in biology. Mechanisms underlying adaptation to factors like temperature and predation pressure remain unclear. Our study explored the role of temperature and predation pressure in shaping the metabolic scaling of an invasive mussel species (Brachidontes pharaonis). Specifically, we performed laboratory-based experiments to assess the effects of phenotypic plasticity on the metabolic scaling by exposing the mussels to water conditions with and without predator cues from another invasive species (the blue crab,Callinectes sapidus) across various temperature regimes. We found that temperature effects on metabolic scaling of the invasive mussels are mediated by the presence of chemical cues of an invasive predator, the blue crab. Investigating temperature–predator interactions underscores the importance of studying the ecological effects of global warming. Our research advances our understanding of how environmental factors jointly impact physiological processes. 
    more » « less
  2. Tenaillon, Maud (Ed.)
    Abstract Genome size is an important correlate of many biological features including body size, metabolic rate, and developmental rate, and can vary due to a variety of mechanisms, including incorporation of repetitive elements, duplication events, or reduction due to selective constraints. Our ability to understand the causes of genome size variation are hampered by limited sampling of many non-model taxa, including monogonont rotifers. Here we used high throughput Nanopore sequencing and flow cytometry to estimate genome sizes of nine species of monogonont rotifers representing seven families, including three representatives of Superorder Gnesiotrocha. We annotated the genomes and classified the repetitive elements. We also compared genome size with two biological features: body size and metabolic rate. Body sizes were obtained from the literature and our estimates. Oxygen consumption was used as a proxy for metabolic rate and was determined using a respirometer. We obtained similar genome size estimates from genome assemblies and flow cytometry, which were positively correlated with body size and size-specific respiration rate. Importantly, we determined that genome size variation is not due to increased numbers of repetitive elements or large regions of duplication. Instead, we observed higher numbers of predicted proteins as genome size increased, but currently many have no known function. Our results substantially expand the taxonomic scope of available genomes for Rotifera and provide opportunities for addressing genetic mechanisms underlying evolutionary and ecological processes in the phylum. 
    more » « less
  3. The allometric scaling of metabolic rate and what drives it are major questions in biology with a long history. Since the metabolic rate at any level of biological organization is an emergent property of its lower-level constituents, it is an outcome of the intrinsic heterogeneity among these units and the interactions among them. However, the influence of lower-level heterogeneity on system-level metabolic rate is difficult to investigate, given the tightly integrated body plan of unitary organisms. In this context, social insects such as honeybees can serve as important model systems because unlike unitary organisms, these superorganisms can be taken apart and reassembled in different configurations to study metabolic rate and its various drivers at different levels of organization. This commentary discusses the background of such an approach and how combining it with artificial selection to generate heterogeneity in metabolic rate with an analytical framework to parse out the different mechanisms that contribute to the effects of heterogeneity can contribute to the various models of metabolic scaling. Finally, the absence of the typical allometric scaling relationship among different species of honeybees is discussed as an important prospect for deciphering the role of top-down ecological factors on metabolic scaling. This article is part of the theme issue ‘The evolutionary significance of variation in metabolic rates’. 
    more » « less
  4. The study explores the individual size distribution (ISD) pattern in ecological communities, characterized by a negative correlation between individual body size and abundance (N ∼ Mλ). The parameter λ denotes the rate of decline in relative abundance from small to large individuals. Despite known influences of temperature and resource availability on body size, their effects on λ remain diverse. Leveraging data from 2.4 million individual body sizes in continental freshwater streams, the research the hypothesis that λ varies as a function of temperature and resource supply. Surprisingly, despite varied environmental conditions and complete species turnover, minimal variation in λ (mean = −1.2, sd = 0.04) was observed, with no discernible impact from temperature or resource supply. The unexpected λ value of −1.2 suggests a higher-than-expected relative abundance of large individuals, challenging assumptions of metabolic scaling at 0.75 and implying large subsidy inputs to large predators. Simulation and mesocosm experiments support a metabolic scaling coefficient of ∼0.4 for freshwater macroinvertebrates. The findings underscore remarkable consistency of individual size distributions in freshwater streams, likely driven by shallow metabolic scaling and large subsidies to large consumers. 
    more » « less
  5. null (Ed.)
    The capacity to extract oxygen from the environment and transport it to respiring tissues in support of metabolic demand reportedly has implications for species’ thermal tolerance, body size, diversity and biogeography. Here, we derived a quantifiable linkage between maximum and basal metabolic rate and their oxygen, temperature and size dependencies. We show that, regardless of size or temperature, the physiological capacity for oxygen supply precisely matches the maximum evolved demand at the highest persistently available oxygen pressure and this is the critical PO2 for the maximum metabolic rate, Pcrit-max. For most terrestrial and shallow-living marine species, Pcrit-max is the current atmospheric pressure, 21 kPa. Any reduction in oxygen partial pressure from current values will result in a calculable decrement in maximum metabolic performance. However, oxygen supply capacity has evolved to match demand across temperatures and body sizes and so does not constrain thermal tolerance or cause the well-known reduction in mass-specific metabolic rate with increasing body mass. The critical oxygen pressure for resting metabolic rate, typically viewed as an indicator of hypoxia tolerance, is, instead, simply a rate-specific reflection of the oxygen supply capacity. A compensatory reduction in maintenance metabolic costs in warm-adapted species constrains factorial aerobic scope and the critical PO2 to a similar range, between ∼2 and 6, across each species’ natural temperature range. The simple new relationship described here redefines many important physiological concepts and alters their ecological interpretation. 
    more » « less