skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comprehensive Validation on Reweighting Samples for Bias Mitigation via AIF360
Fairness Artificial Intelligence (AI) aims to identify and mitigate bias throughout the AI development process, spanning data collection, modeling, assessment, and deployment—a critical facet of establishing trustworthy AI systems. Tackling data bias through techniques like reweighting samples proves effective for promoting fairness. This paper undertakes a systematic exploration of reweighting samples for conventional Machine-Learning (ML) models, utilizing five models for binary classification on datasets such as Adult Income and COMPAS, incorporating various protected attributes. In particular, AI Fairness 360 (AIF360) from IBM, a versatile open-source library aimed at identifying and mitigating bias in machine-learning models throughout the entire AI application lifecycle, is employed as the foundation for conducting this systematic exploration. The evaluation of prediction outcomes employs five fairness metrics from AIF360, elucidating the nuanced and model-specific efficacy of reweighting samples in fostering fairness within traditional ML frameworks. Experimental results illustrate that reweighting samples effectively reduces bias in traditional ML methods for classification tasks. For instance, after reweighting samples, the balanced accuracy of Decision Tree (DT) improves to 100%, and its bias, as measured by fairness metrics such as Average Odds Difference (AOD), Equal Opportunity Difference (EOD), and Theil Index (TI), is mitigated to 0. However, reweighting samples does not effectively enhance the fairness performance of K Nearest Neighbor (KNN). This sheds light on the intricate dynamics of bias, underscoring the complexity involved in achieving fairness across different models and scenarios.  more » « less
Award ID(s):
2323419
PAR ID:
10534323
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Applied Sciences
Volume:
14
Issue:
9
ISSN:
2076-3417
Page Range / eLocation ID:
3826
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work in fairness in machine learning has proposed adjusting for fairness by equalizing accuracy metrics across groups and has also studied how datasets affected by historical prejudices may lead to unfair decision policies. We connect these lines of work and study the residual unfairness that arises when a fairness-adjusted predictor is not actually fair on the target population due to systematic censoring of training data by existing biased policies. This scenario is particularly common in the same applications where fairness is a concern. We characterize theoretically the impact of such censoring on standard fairness metrics for binary classifiers and provide criteria for when residual unfairness may or may not appear. We prove that, under certain conditions, fairness-adjusted classifiers will in fact induce residual unfairness that perpetuates the same injustices, against the same groups, that biased the data to begin with, thus showing that even state-of-the-art fair machine learning can have a "bias in, bias out" property. When certain benchmark data is available, we show how sample reweighting can estimate and adjust fairness metrics while accounting for censoring. We use this to study the case of Stop, Question, and Frisk (SQF) and demonstrate that attempting to adjust for fairness perpetuates the same injustices that the policy is infamous for. 
    more » « less
  2. Biased AI models result in unfair decisions. In response, a number of algorithmic solutions have been engineered to mitigate bias, among which the Synthetic Minority Oversampling Technique (SMOTE) has been studied, to an extent. Although the SMOTE technique and its variants have great potentials to help improve fairness, there is little theoretical justification for its success. In addition, formal error and fairness bounds are not clearly given. This paper attempts to address both issues. We prove and demonstrate that synthetic data generated by oversampling underrepresented groups can mitigate algorithmic bias in AI models, while keeping the predictive errors bounded. We further compare this technique to the existing state-of-the-art fair AI techniques on five datasets using a variety of fairness metrics. We show that this approach can effectively improve fairness even when there is a significant amount of label and selection bias, regardless of the baseline AI algorithm. 
    more » « less
  3. This survey article assesses and compares existing critiques of current fairness-enhancing technical interventions in machine learning (ML) that draw from a range of non-computing disciplines, including philosophy, feminist studies, critical race and ethnic studies, legal studies, anthropology, and science and technology studies. It bridges epistemic divides in order to offer an interdisciplinary understanding of the possibilities and limits of hegemonic computational approaches to ML fairness for producing just outcomes for society’s most marginalized. The article is organized according to nine major themes of critique wherein these different fields intersect: 1) how "fairness" in AI fairness research gets defined; 2) how problems for AI systems to address get formulated; 3) the impacts of abstraction on how AI tools function and its propensity to lead to technological solutionism; 4) how racial classification operates within AI fairness research; 5) the use of AI fairness measures to avoid regulation and engage in ethics washing; 6) an absence of participatory design and democratic deliberation in AI fairness considerations; 7) data collection practices that entrench “bias,” are non-consensual, and lack transparency; 8) the predatory inclusion of marginalized groups into AI systems; and 9) a lack of engagement with AI’s long-term social and ethical outcomes. Drawing from these critiques, the article concludes by imagining future ML fairness research directions that actively disrupt entrenched power dynamics and structural injustices in society. 
    more » « less
  4. Machine learning (ML) has become increasingly prevalent in various domains. However, ML algorithms sometimes give unfair outcomes and discrimination against certain groups. Thereby, bias occurs when our results produce a decision that is systematically incorrect. At various phases of the ML pipeline, such as data collection, pre-processing, model selection, and evaluation, these biases appear. Bias reduction methods for ML have been suggested using a variety of techniques. By changing the data or the model itself, adding more fairness constraints, or both, these methods try to lessen bias. The best technique relies on the particular context and application because each technique has advantages and disadvantages. Therefore, in this paper, we present a comprehensive survey of bias mitigation techniques in machine learning (ML) with a focus on in-depth exploration of methods, including adversarial training. We examine the diverse types of bias that can afflict ML systems, elucidate current research trends, and address future challenges. Our discussion encompasses a detailed analysis of pre-processing, in-processing, and post-processing methods, including their respective pros and cons. Moreover, we go beyond qualitative assessments by quantifying the strategies for bias reduction and providing empirical evidence and performance metrics. This paper serves as an invaluable resource for researchers, practitioners, and policymakers seeking to navigate the intricate landscape of bias in ML, offering both a profound understanding of the issue and actionable insights for responsible and effective bias mitigation. 
    more » « less
  5. Abstract Recent calls have been made for equity tools and frameworks to be integrated throughout the research and design life cycle —from conception to implementation—with an emphasis on reducing inequity in artificial intelligence (AI) and machine learning (ML) applications. Simply stating that equity should be integrated throughout, however, leaves much to be desired as industrial ecology (IE) researchers, practitioners, and decision‐makers attempt to employ equitable practices. In this forum piece, we use a critical review approach to explain how socioecological inequities emerge in ML applications across their life cycle stages by leveraging the food system. We exemplify the use of a comprehensive questionnaire to delineate unfair ML bias across data bias, algorithmic bias, and selection and deployment bias categories. Finally, we provide consolidated guidance and tailored strategies to help address AI/ML unfair bias and inequity in IE applications. Specifically, the guidance and tools help to address sensitivity, reliability, and uncertainty challenges. There is also discussion on how bias and inequity in AI/ML affect other IE research and design domains, besides the food system—such as living labs and circularity. We conclude with an explanation of the future directions IE should take to address unfair bias and inequity in AI/ML. Last, we call for systemic equity to be embedded throughout IE applications to fundamentally understand domain‐specific socioecological inequities, identify potential unfairness in ML, and select mitigation strategies in a manner that translates across different research domains. 
    more » « less