We present a strongly polynomial algorithm for computing an equilibrium in Arrow-Debreu exchange markets with linear utilities. Our algorithm is based on a variant of the weakly polynomial Duan–Mehlhorn (DM) algorithm. We use the DM algorithm as a subroutine to identify revealed edges—that is, pairs of agents and goods that must correspond to the best bang-per-buck transactions in every equilibrium solution. Every time a new revealed edge is found, we use another subroutine that decides if there is an optimal solution using the current set of revealed edges or, if none exists, finds the solution that approximately minimizes the violation of the demand and supply constraints. This task can be reduced to solving a linear program (LP). Even though we are unable to solve this LP in strongly polynomial time, we show that it can be approximated by a simpler LP with two variables per inequality that is solvable in strongly polynomial time.
more »
« less
Differentiable Combinatorial Scheduling at Scale
This paper addresses the complex issue of resource-constrained scheduling, an NP-hard problem that spans critical areas including chip design and high-performance computing. Tradi- tional scheduling methods often stumble over scal- ability and applicability challenges. We propose a novel approach using a differentiable combina- torial scheduling framework, utilizing Gumbel- Softmax differentiable sampling technique. This new technical allows for a fully differentiable formulation of linear programming (LP) based scheduling, extending its application to a broader range of LP formulations. To encode inequality constraints for scheduling tasks, we introduce con- strained Gumbel Trick, which adeptly encodes arbitrary inequality constraints. Consequently, our method facilitates an efficient and scalable scheduling via gradient descent without the need for training data. Comparative evaluations on both synthetic and real-world benchmarks high- light our capability to significantly improve the optimization efficiency of scheduling, surpassing state-of-the-art solutions offered by commercial and open-source solvers such as CPLEX, Gurobi, and CP-SAT in the majority of the designs.
more »
« less
- PAR ID:
- 10534856
- Publisher / Repository:
- International Conference on Machine Learning (ICML) 2024
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neural-network-enabled data analysis in real-time scientific applications imposes stringent requirements on inference latency. Meanwhile, recent deep learning (DL) model design trends to replace a single branch with multiple branches for high prediction accuracy and robustness, which makes interoperator parallelization become an effective approach to improve inference latency. However, existing inter-operator parallelization techniques for inference acceleration are mainly focused on utilization optimization in a single GPU. With the data size of an input sample and the scale of a DL model ever-growing, the limited resource of a single GPU is insufficient to support the parallel execution of large operators. In order to break this limitation, we study hybrid inter-operator parallelism both among multiple GPUs and in each GPU. In this paper, we design and implement a hierarchical inter-operator scheduler (HIOS) to automatically distribute large operators onto different GPUs and group small operators in the same GPU for parallel execution. Particularly, we propose a novel scheduling algorithm, named HIOS-LP, which consists of inter-GPU operator parallelization through iterative longest-path (LP) mapping and intra-GPU operator parallelization based on a sliding window. In addition to extensive simulation results, experiments with modern convolutional neural network benchmarks demonstrate that our HIOS-LP outperforms the state-of-the-art inter-operator scheduling algorithm IOS by up to 17% in real systems.more » « less
-
Low-Power Wide-Area Networks (LP-WANs) are seeing wide-spread deployments connecting millions of sensors, each powered by a ten-year AA battery to radio infrastructure, often miles away. By design, iteratively querying all sensors in an LP-WAN may take several hours or even days, given the stringent battery limits of client radios. This precludes obtaining even an approximate real-time view of sensed information across LP-WAN devices over a large area, say in the event of a disaster, fault or simply for diagnostics.This paper presents QuAiL 1 , a system that provides a coarse aggregate view of sensed data across LP-WAN devices over a wide- area within a time span of just one LP-WAN packet. QuAiL achieves this by coordinating multiple LP-WAN radios to transmit their information synchronously in time and frequency despite their power constraints. We design each client's transmission so that the base station can retrieve an approximate heatmap of sensed data by exploiting the spatial correlation of this data across clients. We further show how our system can be optimized for statistical and machine learning queries, all while maintaining the security and privacy of sensed data from individual clients. Our deployment over a 3 sq. km. LP-WAN deployment around CMU campus in Pittsburgh demonstrates a 4x faster information retrieval versus the state-of- the-art statistical methods to retrieve the spatial sensor heatmap at a desired resolution.more » « less
-
Del Pia, Alberto; Kaibel, Volker (Ed.)A long-standing conjecture for the traveling salesman problem (TSP) states that the integrality gap of the standard linear programming relaxation of the TSP (sometimes called the Subtour LP or the Held-Karp bound) is at most 4/3 for symmetric instances of the TSP obeying the triangle inequality. In this paper we consider the half-integral case, in which a feasible solution to the LP has solution values in {0,1/2,1} . Karlin, Klein, and Oveis Gharan [9], in a breakthrough result, were able to show that in the half-integral case, the integrality gap is at most 1.49993; Gupta et al. [6] showed a slight improvement of this result to 1.4983. Both of these papers consider a hierarchy of critical tight sets in the support graph of the LP solution, in which some of the sets correspond to cycle cuts and the others to degree cuts. Here we show that if all the sets in the hierarchy correspond to cycle cuts, then we can find a distribution of tours whose expected cost is at most 4/3 times the value of the half-integral LP solution; sampling from the distribution gives us a randomized 4/3-approximation algorithm. We note that known bad cases for the integrality gap have a gap of 4/3 and have a half-integral LP solution in which all the critical tight sets in the hierarchy are cycle cuts; thus our result is tight.more » « less
-
Geo-obfuscation serves as a location privacy protection mechanism (LPPM), enabling mobile users to share obfuscated locations with servers, rather than their exact locations. This method can protect users’ location privacy when data breaches occur on the server side since the obfuscation process is irreversible. To reduce the utility loss caused by data obfuscation, linear programming (LP) is widely employed, which, however, might suffer from a polynomial explosion of decision variables, rendering it impractical in largescale geo-obfuscation applications. In this paper, we propose a new LPPM, called Locally Relevant Geo-obfuscation (LR-Geo), to optimize geo-obfuscation using LP in a time-efficient manner. This is achieved by confining the geoobfuscation calculation for each user exclusively to the locally relevant (LR) locations to the user’s actual location. Given the potential risk of LR locations disclosing a user’s actual whereabouts, we enable users to compute the LP coefficients locally and upload them only to the server, rather than the LR locations. The server then solves the LP problem based on the received coefficients. Furthermore, we refine the LP framework by incorporating an exponential obfuscation mechanism to guarantee the indistinguishability of obfuscation distribution across multiple users. Based on the constraint structure of the LP formulation, we apply Benders’ decomposition to further enhance computational efficiency. Our theoretical analysis confirms that, despite the geo-obfuscation being calculated independently for each user, it still meets geo-indistinguishability constraints across multiple users with high probability. Finally, the experimental results based on a real-world dataset demonstrate that LR-Geo outperforms existing geo-obfuscation methods in computational time, data utility, and privacy preservation.more » « less
An official website of the United States government

