This content will become publicly available on January 1, 2025
- Award ID(s):
- 2326170
- PAR ID:
- 10536555
- Editor(s):
- Benjamin, Paaßen; Carrie, Demmans Epp
- Publisher / Repository:
- International Educational Data Mining Society
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
Large Language Models (LLMs) with strong abilities in natural language processing tasks have emerged and have been applied in various kinds of areas such as science, finance and software engineering. However, the capability of LLMs to advance the field of chemistry remains unclear. In this paper, rather than pursuing state-of-the-art performance, we aim to evaluate capabilities of LLMs in a wide range of tasks across the chemistry domain. We identify three key chemistryrelated capabilities including understanding, reasoning and explaining to explore in LLMs and establish a benchmark containing eight chemistry tasks. Our analysis draws on widely recognized datasets facilitating a broad exploration of the capacities of LLMs within the context of practical chemistry. Five LLMs (GPT-4, GPT-3.5, Davinci-003, Llama and Galactica) are evaluated for each chemistry task in zero-shot and few-shot in-context learning settings with carefully selected demonstration examples and specially crafted prompts. Our investigation found that GPT-4 outperformed other models and LLMs exhibit different competitive levels in eight chemistry tasks. In addition to the key findings from the comprehensive benchmark analysis, our work provides insights into the limitation of current LLMs and the impact of in-context learning settings on LLMs’ performance across various chemistry tasks. The code and datasets used in this study are available at https://github.com/ChemFoundationModels/ChemLLMBench.more » « less
-
Large language models (LLMs) encode parametric knowledge about world facts and have shown remarkable performance in knowledge-driven NLP tasks. However, their reliance on parametric knowledge may cause them to overlook contextual cues, leading to incorrect predictions in context-sensitive NLP tasks (e.g., knowledge acquisition tasks). In this paper, we seek to assess and enhance LLMs’ contextual faithfulness in two aspects: knowledge conflict and prediction with abstention. We demonstrate that LLMs’ faithfulness can be significantly improved using carefully designed prompting strategies. In particular, we identify opinion-based prompts and counterfactual demonstrations as the most effective methods. Opinion-based prompts reframe the context as a narrator’s statement and inquire about the narrator’s opinions, while counterfactual demonstrations use instances containing false facts to improve faithfulness in knowledge conflict situations. Neither technique requires additional training. We conduct experiments on three datasets of two standard NLP tasks, machine reading comprehension and relation extraction, and the results demonstrate significant improvement in faithfulness to contexts. Code and data are released at https://github.com/wzhouad/context-faithful-llm.more » « less
-
Does prompting a large language model (LLM) like GPT-3 with explanations improve in-context learning? We study this question on two NLP tasks that involve reasoning over text, namely question answering and natural language inference. We test the performance of four LLMs on three textual reasoning datasets using prompts that include explanations in multiple different styles. For these tasks, we find that including explanations in the prompts for OPT, GPT-3 (davinci), and InstructGPT (text-davinci-001) only yields small to moderate accuracy improvements over standard few-show learning. However, text-davinci-002 is able to benefit more substantially. We further show that explanations generated by the LLMs may not entail the models' predictions nor be factually grounded in the input, even on simple tasks with extractive explanations. However, these flawed explanations can still be useful as a way to verify LLMs' predictions post-hoc. Through analysis in our three settings, we show that explanations judged by humans to be good---logically consistent with the input and the prediction---more likely cooccur with accurate predictions. Following these observations, we train calibrators using automatically extracted scores that assess the reliability of explanations, allowing us to improve performance post-hoc across all of our datasets.more » « less
-
Abstract Importance The study highlights the potential of large language models, specifically GPT-3.5 and GPT-4, in processing complex clinical data and extracting meaningful information with minimal training data. By developing and refining prompt-based strategies, we can significantly enhance the models’ performance, making them viable tools for clinical NER tasks and possibly reducing the reliance on extensive annotated datasets.
Objectives This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task-specific prompts to improve their performance.
Materials and Methods We evaluated these models on 2 clinical NER tasks: (1) to extract medical problems, treatments, and tests from clinical notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) to identify nervous system disorder-related adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annotation guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each prompt's effectiveness and compared the models to BioClinicalBERT.
Results Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples and 0.301, 0.593 for VAERS. Additional prompt components consistently improved model performance. When all 4 components were used, GPT-3.5 and GPT-4 achieved relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering few training samples are needed.
Discussion The study’s findings suggest a promising direction in leveraging LLMs for clinical NER tasks. However, while the performance of GPT models improved with task-specific prompts, there's a need for further development and refinement. LLMs like GPT-4 show potential in achieving close performance to state-of-the-art models like BioClinicalBERT, but they still require careful prompt engineering and understanding of task-specific knowledge. The study also underscores the importance of evaluation schemas that accurately reflect the capabilities and performance of LLMs in clinical settings.
Conclusion While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt framework, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.
-
Large Language Models (LLMs) are so powerful that they sometimes learn correlations between labels and features that are irrelevant to the task, leading to poor generalization on out-of-distribution data. We propose explanation-based finetuning as a general approach to mitigate LLMs’ reliance on spurious correlations. Unlike standard finetuning where the model only predicts the answer given the input, we finetune the model to additionally generate a free-text explanation supporting its answer. To evaluate our method, we finetune the model on artificially constructed training sets containing different types of spurious cues, and test it on a test set without these cues. Compared to standard finetuning, our method makes GPT-3 (davinci) remarkably more robust against spurious cues in terms of accuracy drop across four classification tasks: ComVE (+1.2), CREAK (+9.1), e-SNLI (+15.4), and SBIC (+6.5). The efficacy generalizes across multiple model families and scales, with greater gains for larger models. Finally, our method also works well with explanations generated by the model, implying its applicability to more datasets without human-written explanations.more » « less