skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b
Abstract Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1–3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3–12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σconfidence) and evidence for optical opacity, possibly attributable to H, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance (‘metallicity’,$${\rm{M/H}}=1.0{3}_{-0.51}^{+1.11}$$ M/H = 1.0 3 0.51 + 1.11 times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators.  more » « less
Award ID(s):
1945633
PAR ID:
10538039
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
NASA/ADS
Date Published:
Journal Name:
Nature
Volume:
620
Issue:
7973
ISSN:
0028-0836
Page Range / eLocation ID:
292 to 298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present high-resolutionK-band emission spectra of the quintessential hot Jupiter HD 189733 b from the Keck Planet Imager and Characterizer. Using a Bayesian retrieval framework, we fit the dayside pressure–temperature profile, orbital kinematics, mass-mixing ratios of H2O, CO, CH4, NH3, HCN, and H2S, and the13CO/12CO ratio. We measure mass fractions of logH 2 O = 2.0 0.4 + 0.4 and logCO = 2.2 0.5 + 0.5 , and place upper limits on the remaining species. Notably, we find logCH4< −4.5 at 99% confidence, despite its anticipated presence at the equilibrium temperature of HD 189733 b assuming local thermal equilibrium. We make a tentative (∼3σ) detection of13CO, and the retrieved posteriors suggest a12C/13C ratio similar to or substantially less than the local interstellar value. The possible13C enrichment would be consistent with accretion of fractionated material in ices or in the protoplanetary disk midplane. The retrieved abundances correspond to a substantially substellar atmospheric C/O = 0.3 ± 0.1, while the carbon and oxygen abundances are stellar to slightly superstellar, consistent with core-accretion models which predict an inverse correlation between C/O and metallicity. The specific combination of low C/O and high metallicity suggests significant accretion of solid material may have occurred late in the formation process of HD 189733 b. 
    more » « less
  2. Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ Σ = ( Σ 1 , , Σ ) is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ τ = ( τ 1 , , τ ) is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ H 0 0 ( X , L p ) be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ L p : = L p that vanish to order at least$$\tau _jp$$ τ j p along$$\Sigma _j$$ Σ j ,$$1\le j\le \ell $$ 1 j . If$$Y\subset X$$ Y X is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ H 0 0 ( X | Y , L p ) of holomorphic sections of$$L^p|_Y$$ L p | Y that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ H 0 0 ( X , L p ) . Assuming that the triplet$$(L,\Sigma ,\tau )$$ ( L , Σ , τ ) is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ dim H 0 0 ( X , L p ) p n , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ dim H 0 0 ( X | Y , L p ) p m . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ H 0 0 ( X | Y , L p ) converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ H 0 0 ( X | Y , L p ) as$$p\rightarrow \infty $$ p
    more » « less
  3. Abstract We present Keck Planet Imager and Characterizer (KPIC) high-resolution (R∼35,000)K-band thermal emission spectroscopy of the ultrahot Jupiter WASP-33b. The use of KPIC’s single-mode fibers greatly improves both blaze and line-spread stabilities relative to slit spectrographs, enhancing the cross-correlation detection strength. We retrieve the dayside emission spectrum with a nested-sampling pipeline, which fits for orbital parameters, the atmospheric pressure–temperature profile, and the molecular abundances. We strongly detect the thermally inverted dayside and measure mass-mixing ratios for CO ( logCO MMR = 1.1 0.6 + 0.4 ), H2O ( logH 2 O MMR = 4.1 0.9 + 0.7 ), and OH ( logOH MMR = 2.1 1.1 + 0.5 ), suggesting near-complete dayside photodissociation of H2O. The retrieved abundances suggest a carbon- and possibly metal-enriched atmosphere, with a gas-phase C/O ratio of 0.8 0.2 + 0.1 , consistent with the accretion of high-metallicity gas near the CO2snow line and post-disk migration or with accretion between the soot and H2O snow lines. We also find tentative evidence for12CO/13CO ∼ 50, consistent with values expected in protoplanetary disks, as well as tentative evidence for a metal-enriched atmosphere (2–15 × solar). These observations demonstrate KPIC’s ability to characterize close-in planets and the utility of KPIC’s improved instrumental stability for cross-correlation techniques. 
    more » « less
  4. Abstract We demonstrate that doping hydroxyapatite (HAp) with Cr3+ions induces oxygen vacancies, contributing to paramagnetism. Cathodoluminescence and photoluminescence analyses reveal increased oxygen vacancy formation in$${\text{O}}{\text{H}}^{-}$$ OH - and$${\text{P}}{\text{O}}_{4}^{3-}$$ PO 4 3 - groups with rising Cr3+concentrations, highlighted by stronger cathodoluminescence emissions at 2.57 and 2.95 eV and the photoluminescence emission at 3.32 eV. Raman spectroscopy shows new modes at 900 and 970 cm−1, indicating distortion of thev1vibrational mode due to Cr3+substitution at Ca(II) sites of the HAp lattice. X-ray photoelectron spectroscopy confirms Cr3+in the HAp:Cr. Magnetometry reveals a shift from diamagnetism in pure HAp to increasing paramagnetism in HAp:Cr with higher Cr3+content, achieving 0.0460 emu/g at 10 kOe with concentrations higher than 2.9 at.%. This paramagnetism is attributed to Cr3+ions and singly ionized oxygen vacancies$$V^{\prime}_{{\text{O}}}$$ V O aligning along an external magnetic field, with$$V^{\prime}_{{\text{O}}}$$ V O formation linked to$${\text{PO}}_{4}^{{3}-}$$ PO 4 3 - replacement by$${\text{PO}}_{3}^{{2}-}$$ PO 3 2 - in HAp. 
    more » « less
  5. A<sc>bstract</sc> We report the first measurement of the inclusivee+e→$$ b\overline{b} $$ b b ¯ →$$ {D}_s^{\pm } $$ D s ± Xande+e→$$ b\overline{b} $$ b b ¯ → D0/$$ {\overline{D}}^0 $$ D ¯ 0 Xcross sections in the energy range from 10.63 to 11.02 GeV. Based on these results, we determineσ(e+e→$$ {B}_s^0{\overline{B}}_s^0 $$ B s 0 B ¯ s 0 X) andσ(e+e→$$ B\overline{B} $$ B B ¯ X) in the same energy range. We measure the fraction of$$ {B}_s^0 $$ B s 0 events at Υ(10860) to befs= ($$ {22.0}_{-2.1}^{+2.0} $$ 22.0 2.1 + 2.0 )%. We determine also the ratio of the$$ {B}_s^0 $$ B s 0 inclusive branching fractions$$ \mathcal{B} $$ B ($$ {B}_s^0 $$ B s 0 → D0/$$ {\overline{D}}^0 $$ D ¯ 0 X)/$$ \mathcal{B} $$ B ($$ {B}_s^0 $$ B s 0 →$$ {D}_s^{\pm } $$ D s ± X) = 0.416 ± 0.018 ± 0.092. The results are obtained using the data collected with the Belle detector at the KEKB asymmetric-energye+ecollider. 
    more » « less