skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum spherical codes
As with classical computers, quantum computers require error-correction schemes to reliably perform useful large-scale calculations. The nature and frequency of errors depends on the quantum computing platform, and although there is a large literature on qubit-based coding, these are often not directly applicable to devices that store information in bosonic systems such as photonic resonators. Here, we introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes. We apply this framework to bosonic coding, and we obtain multimode extensions of the cat codes that can outperform previous constructions but require a similar type of overhead. Our polytope-based cat codes consist of sets of points with large separation that, at the same time, form averaging sets known as spherical designs. We also recast concatenations of Calderbank–Shor–Steane codes with cat codes as quantum spherical codes, which establishes a method to autonomously protect against dephasing noise.  more » « less
Award ID(s):
2104489 2110113 2330909 2120757
PAR ID:
10538113
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Physics
Volume:
20
Issue:
8
ISSN:
1745-2473
Page Range / eLocation ID:
1300 to 1305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fault-tolerant quantum computation with bosonic qubits often necessitates the use of noisy discrete-variable ancillae. In this work, we establish a comprehensive and practical fault-tolerance framework for such a hybrid system and synthesize it with fault-tolerant protocols by combining bosonic quantum error correction (QEC) and advanced quantum control techniques. We introduce essential building blocks of error-corrected gadgets by leveraging ancilla-assisted bosonic operations using a generalized variant of path-independent quantum control. Using these building blocks, we construct a universal set of error-corrected gadgets that tolerate a single-photon loss and an arbitrary ancilla fault for four-legged cat qubits. Notably, our construction requires only dispersive coupling between bosonic modes and ancillae, as well as beam-splitter coupling between bosonic modes, both of which have been experimentally demonstrated with strong strengths and high accuracy. Moreover, each error-corrected bosonic qubit is comprised of only a single bosonic mode and a three-level ancilla, featuring the hardware efficiency of bosonic QEC in the full fault-tolerant setting. We numerically demonstrate the feasibility of our schemes using current experimental parameters in the circuit-QED platform. Finally, we present a hardware-efficient architecture for fault-tolerant quantum computing by concatenating the four-legged cat qubits with an outer qubit code utilizing only beam-splitter couplings. Our estimates suggest that the overall noise threshold can be reached using existing hardware. These developed fault-tolerant schemes extend beyond their applicability to four-legged cat qubits and can be adapted for other rotation-symmetrical codes, offering a promising avenue toward scalable and robust quantum computation with bosonic qubits. 
    more » « less
  2. Abstract Quantum computers are promising tools for simulating many-body quantum systems due to their potential scaling advantage over classical computers. While significant effort has been expended on many-fermion systems, here we simulate a model entangled many-boson system with the contracted quantum eigensolver (CQE). We generalize the CQE to many-boson systems by encoding the bosonic wavefunction on qubits. The CQE provides a compact ansatz for the bosonic wave function whose gradient is proportional to the residual of a contracted Schrödinger equation. We apply the CQE to a bosonic system, whereNquantum harmonic oscillators are coupled through a pairwise quadratic repulsion. The model is relevant to the study of coupled vibrations in molecular systems on quantum devices. Results demonstrate the potential efficiency of the CQE in simulating bosonic processes such as molecular vibrations with good accuracy and convergence even in the presence of noise. 
    more » « less
  3. We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code, analogous to the continuous-variable cat encoding. With this, we can correct the dominant error sources, namely processes that can be expressed as error operators that are linear or quadratic in the components of angular momentum. Such codes tailored to dominant error sources can exhibit superior thresholds and lower resource overheads when compared to those designed for unstructured noise models. A key component is the gate that preserves the rank of spherical tensor operators. Categorizing the dominant errors as phase and amplitude errors, we demonstrate how phase errors, analogous to phase-flip errors for qubits, can be effectively corrected. Furthermore, we propose a measurement-free error-correction scheme to address amplitude errors without relying on syndrome measurements. Through an in-depth analysis of logical gate errors, we establish that the fault-tolerant threshold for error correction in the spin-cat encoding surpasses that of standard qubit-based encodings. We consider a specific implementation based on neutral-atom quantum computing, with qudits encoded in the nuclear spin of 87Sr, and show how to generate the universal gate set, including the rank-preserving gate, using quantum control and the Rydberg blockade. These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing. 
    more » « less
  4. In the quantum compression scheme proposed by Schumacher, Alice compresses a message that Bob decompresses. In that approach, there is some probability of failure and, even when successful, some distortion of the state. For sufficiently large blocklengths, both of these imperfections can be made arbitrarily small while achieving a compression rate that asymp- totically approaches the source coding bound. However, direct implementation of Schumacher compression suffers from poor circuit complexity. In this paper, we consider a slightly different approach based on classical syndrome source coding. The idea is to use a linear error-correcting code and treat the state to be compressed as a superposition of error patterns. Then, Alice can use quantum gates to apply the parity-check matrix to her message state. This will convert it into a superposition of syndromes. If the original superposition was supported on correctable errors (e.g., coset leaders), then this process can be reversed by decoding. An implementation of this based on polar codes is described and simulated. As in classical source coding based on polar codes, Alice maps the information into the “frozen” qubits that constitute the syndrome. To decompress, Bob utilizes a quantum version of successive cancellation coding. 
    more » « less
  5. Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. Along with the exploration into novel and more efficient quantum error correction codes, it is also essential to design circuits for practical realization of these codes. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We first describe Shor’s 9-qubit code which was the first quantum error correcting code. We discuss the stabilizer formalism along with the design of encoding and decoding circuits for stabilizer codes such as the five-qubit code and Steane code. We also design nearest neighbor compliant circuits for the above codes. The circuits were simulated and verified using IBM Qiskit. 
    more » « less