Abstract. A novel fiber-optic distributed temperature sensing instrument, the Fiber-optic Laser Operated Atmospheric Temperature Sensor (FLOATS), was developed for continuous in situ profiling of the atmosphere up to 2 km below constant-altitude scientific balloons. The temperature-sensingsystem uses a suspended fiber-optic cable and temperature-dependent scattering of pulsed laser light in the Raman regime to retrieve continuous3 m vertical-resolution profiles at a minimum sampling period of 20 s.FLOATS was designed for operation aboard drifting super-pressure balloons inthe tropical tropopause layer at altitudes around 18 km as part of theStratéole 2 campaign. A short test flight of the system was conductedfrom Laramie, Wyoming, in January 2021 to check the optical, electrical, andmechanical systems at altitude and to validate a four-reference temperaturecalibration procedure with a fiber-optic deployment length of 1170 m. During the 4 h flight aboard a vented balloon, FLOATS retrieved temperatureprofiles during ascent and while at a float altitude of about 19 km. TheFLOATS retrievals provided differences of less than 1.0 ∘Ccompared to a commercial radiosonde aboard the flight payload during ascent.At float altitude, a comparison of optical length and GPS position at thebottom of the fiber-optic revealed little to no curvature in the fiber-opticcable, suggesting that the position of any distributed temperaturemeasurement can be effectively modeled. Comparisons of the distributed temperature retrievals to the reference temperature sensors show strongagreement with root-mean-square-error values less than 0.4 ∘C. Theinstrument also demonstrated good agreement with nearby meteorologicalobservations and COSMIC-2 satellite profiles. Observations of temperatureand wind perturbations compared to the nearby radiosounding profiles provide evidence of inertial gravity wave activity during the test flight. Spectral analysis of the observed temperature perturbations shows that FLOATS is an effective and pioneering tool for the investigation of small-scale gravity waves in the upper troposphere and lower stratosphere.
more »
« less
Field Test of Altitude-Controlled Stratospheric Ozonesonding with Vented Balloons during the 2024 Total Solar Eclipse
The concentration of the stratospheric ozone layer is of great interest to the atmospheric science community, since it is critical in blocking the harmful UV radiation from the sun. Typically, regular weather balloons with Electrochemical Cell (ECC) ozonesondes are used to determine the vertical profile of ozone column concentration within a flight time of ~2 hours, with a limited fraction of the data relevant to the ozone layer. Therefore, it would be ideal if ozonesonde flights can be maintained within the ozone layer (~60,000 to 80,000 ft) to maximize the efficiency in data acquisition, especially considering the rising costs of ozonesonding and high-altitude ballooning. We adapted the vented balloon with altitude-control flight capability from the Nationwide Eclipse Ballooning Program (NEBP) for atmospheric ozonesonding and deployed a commercial ECC ozonesonde payload with this approach from Central Texas during the 2024 total solar eclipse in the hope of (1) field testing the performance and application potential of vented balloons in horizontal ozone layer profiling and (2) monitoring the stratospheric ozone layer during the solar eclipse for an extended period of time. The adapted vent valve successfully lowered the balloon from 71,000 ft to 41,000 ft within minutes and demonstrated promising performance in the field. Unfortunately, unexpected radio communication difficulties were experienced from six hours before the totality to two hours after, leaving the second research objective largely unobtainable.
more »
« less
- Award ID(s):
- 1847019
- PAR ID:
- 10541241
- Publisher / Repository:
- Iowa State University Digital Press
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Atmospheric gravity waves generated by an eclipse were first proposed in 1970. Despite numerous efforts since, there has been no definitive evidence for eclipse generated gravity waves in the lower to middle atmosphere. Measuring wave characteristics produced by a definite forcing event such as an eclipse provides crucial knowledge for developing more accurate physical descriptions of gravity waves. These waves are fundamental to the transport of energy and momentum throughout the atmosphere and their parameterization or simulation in numerical models provides increased accuracy to forecasts. Here, we present the findings from a radiosonde field campaign carried out during the total solar eclipse of July 2, 2019 aimed at detecting eclipse-driven gravity waves in the stratosphere. This eclipse was the source of three stratospheric gravity waves. The first wave (eclipse wave #1) was detected 156 min after totality and the other two waves were detected 53 and 62 min after totality (eclipse waves #2 and #3 respectively) using balloon-borne radiosondes. Our results demonstrate both the importance of field campaign design and the limitations of currently accepted balloon-borne analysis techniques for the detection of stratospheric gravity waves.more » « less
-
null (Ed.)The daytime atmospheric boundary layer is characterized by vertical convective motions that are driven by solar radiation. Lift provided by thermal updrafts is sufficiently ubiquitous that some diurnal birds and arthropods have evolved specialized flight behaviors to soar or embed in these atmospheric currents. While the diel periodicity of boundary-layer dynamics and animal flight has been characterized, rare disruptions to this cycle provide a chance to investigate animal behavioral responses to boundary layer motion and photoperiod that are disjointed from their expected circadian rhythm. To analyze these interactions, we couple radar-derived animal observations with co-located lidar measurements of the convective boundary layer over north-central Oklahoma, USA during the solar eclipse of 21 August 2017. Analysis of animal flight behavior confirmed that ascending and descending flight effort did change in the time period encompassing the solar eclipse, however, the response in behavior was coincident with proximate changes in boundary-layer turbulence. Both the animal behavioral response and decrease in atmospheric turbulence lagged changes in solar irradiance by approximately 30 min, suggesting that changes in flight activity were not cued by the eclipse directly, but rather by the modification of vertical air motions caused by the eclipse.more » « less
-
Abstract. Ozone is a pollutant formed in the atmosphere by photochemical processes involving nitrogen oxides (NOx) and volatile organic compounds (VOCs) when exposed to sunlight. Tropospheric boundary layer ozone is regularly measured at ground stations and sampled infrequently through balloon, lidar, and crewed aircraft platforms, which have demonstrated characteristic patterns with altitude. Here, to better resolve vertical profiles of ozone within the atmospheric boundary layer, we developed and evaluated an uncrewed aircraft system (UAS) platform for measuring ozone and meteorological parameters of temperature, pressure, and humidity. To evaluate this approach, a UAS was flown with a portable ozone monitor and a meteorological temperature and humidity sensor to compare to tall tower measurements in northern Wisconsin. In June 2020, as a part of the WiscoDISCO20 campaign, a DJI M600 hexacopter UAS was flown with the same sensors to measure Lake Michigan shoreline ozone concentrations. This latter UAS experiment revealed a low-altitude structure in ozone concentrations in a shoreline environment showing the highest ozone at altitudes from 20–100 m a.g.l. These first such measurements of low-altitude ozone via a UAS in the Great Lakes region revealed a very shallow layer of ozone-rich air lying above the surface.more » « less
-
Abstract On 8 April 2024, a total solar eclipse overpassed Texas in the southern portion of the United States. To monitor the impact of the total solar eclipse, a group of students from Texas A&M University–Corpus Christi developed two weather balloon payloads and six ground-based instrument packages using microcontrollers and low-cost sensors. These instrument packages were deployed to six different sites spanning nearly 600 km along the total eclipse path from the Mexican border to North Texas. During the total eclipse, air temperature decreased, and relative humidity increased consistently at all six stations due to the reduction in sensible heating. The dewpoint temperatures decreased at the near surface at all sites likely due to the reduction in evaporation. Five of the six ground stations observed a slight dampening of the wind speed, and two of the six stations recorded significant counterclockwise wind shifts. No consistent pattern was observed in the surface vertical electric field at the six ground stations. The two balloon payloads captured the damping of the visible and ultraviolet (UV) radiation in the upper troposphere and lower stratosphere throughout the event. Though a slight decrease in both temperature and ozone in the lower stratosphere was observed after the totality, it is difficult to determine the impact from the eclipse on the ozone mixing ratio and dynamics in the lower stratosphere from only a few vertical profiles. For the students who participated, this field campaign has provided invaluable experiences in instrumentation, fieldwork, and data collection.more » « less
An official website of the United States government

